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Abstract 

The DNA motif discovery is a primary step in many systems for studying gene func-
tion.  Motif discovery plays a vital role in identification of Transcription Factor Binding 
Sites (TFBSs) that help in learning the mechanisms for regulation of gene expression. 
Over the past decades, different algorithms were used to design fast and accurate 
motif discovery tools. These algorithms are generally classified into consensus or prob-
abilistic approaches that many of them are time-consuming and easily trapped in a 
local optimum. Nature-inspired algorithms and many of combinatorial algorithms 
are recently proposed to overcome these problems. This paper presents a general clas-
sification of motif discovery algorithms with new sub-categories that facilitate build-
ing a successful motif discovery algorithm. It also presents a summary of comparison 
between them. 
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Introduction 
 

Motif discovery is one of the sequence analysis prob-

lems under the application layer and it is one of the 

significant difficulties in bioinformatics applications. A 

DNA sequence motif is a subsequence of DNA se-

quence that is a short similar recurring pattern of nu-

cleotides, and it has many biological functions 1. A 

DNA motif refers to a short similar repeated pattern of 

nucleotides that has biological meaning. Sequence mo-

tifs also called regulatory elements exist in Regulatory 

Region (RR) in eukaryotic gene 2. 

Sequence motifs have constant size and are often 

repeated and conserved, but at the same time, they are 

tiny (about 6-12 bp) and the intergenic regions are very 

long and highly variable that make motif discovery a 

problematic task. These patterns play an essential role 

in recognizing Transcription Factor Binding Sites (TF-

BSs) that help in learning the mechanisms for regula-

tion of gene expression 3. Different types of motifs are  

planted motifs, structured motifs, sequence motifs,  

 

 

 

 
 

gapped motifs and network motifs 4. Motif discovery 

problem in a simple form can be formulated as in fig-

ure 1 where the input is DNA sequence with unknown 

motifs at different unknown positions with various 

lengths and the output is the DNA motifs. The motif 

discovery technique consists of three main stages 5:  
 

A. Pre-processing 
It is preparing the DNA sequences for accurate mo-

tif discovery by assembling and clean steps. In assem-

bling step, it is advised to select as many target se-

quences as possible that may contain motifs, try to 

keep sequences as short as possible, and remove se-

quences that are unlikely to contain any motifs. As-

sembling step is done by clustering the input sequences 

based on some information and then extracting the de-

sired sequences in an appropriate sequence database. 

Then, cleaning the input sequences to mask or remove 

confounding sequences is necessary. 
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Figure 1. General block diagram of motif discovery technique. 
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B. Discovering 

The middle stage is the motif discovery approach 

that begins by representing the sequences. There are 

two ways to represent the motifs: consensus string and 

Position-specific Weight Matrices (PWM). Consensus 

string has the same length of DNA sequence motif; it 

allows to degenerate symbols in a string using IUPAC 

code while PWM is a matrix of 4xm where m is the 

motif length. Every position in the matrix represents 

the probability of each nucleotide at each index posi-

tion of the motif. After motif representation, the suita-

ble objective function is determined and finally appro-

priate search algorithm is applied. There are hundreds 

of algorithms for motif extraction that most of them are 

listed in table 1.  
 

C. Post-processing 
Post-processing evaluates the resultant motifs. This 

paper presents a more general classification of the se-

quence motifs extraction methods. Most of them are 

mentioned with a comparison among them.   

 
Literature Review 

 

There are two principal types of motif discovery al-

gorithms; i.e. enumeration approach and probabilistic 

technique. Enumeration approach searches for consen-

sus sequences; motifs are predicted based on the enu-

meration of words and computing word similarities so 

this approach is sometimes called the word enumera-

tion approach to solve Panted (l, d) Motif Problem 

(PMP) with motif length (l) and a maximum number of 

mismatches (d). The algorithms based on the word 

enumeration approach exhaustively search the whole 

search space to determine which ones appear with pos-

sible substitutions and therefore it typically locates the 

global optimum. However, this also means that they 

are exponential-time algorithms that require a long 

time to detect the larger l and inefficient for handling 

dozens of sequences, so they are only suitable for short 

motifs 6. Moreover, these algorithms require many pa-

rameters determined by the users such as motif length, 

the number of mismatches allowed, and a minimum 

number of sequences that the motif has to appear in 7. 

The word enumeration approach can be accelerated 

by using specialized data structures such as suffix trees 

or parallel processing 8. Popular algorithms based on 

this approach are DREME 9, CisFinder 10, Weeder 7, 

FMotif 11, and MCES 12.  

A second group is a probabilistic approach. It con-

structs a probabilistic model called position-Specific 

Weight Matrix (PSWM) or motif matrix that specifies 

a distribution of bases for each position in TFBS to 

distinguish motifs vs. non-motifs and it requires few 

search parameters 13. The most popular methods based 

on probabilistic approach are MEME 14, STEME 15, 

EXTREME 16, AlignACE 17, and BioProspector 18. 

Recently, new algorithms inspired from nature are 

presented that solve complex and dynamic problems 

with appropriate time and optimal cost. These algo-

rithms simulate the behavior of insects or other animals 

for problem-solving. Evolutionary algorithms can over-

come the disadvantages of local search and synthesize 

local search and global search 19. Examples of evolu-

tionary algorithms are: Genetic Algorithm (GA) 20, Ge-

netic Programming (Special type of GA) 21, Differen-

tial Evolution (DE) 22, Evolution Strategy 23, Multi-

modal Optimization 24, Cuckoo-Search (CS) 25, Levy 

flight 26, Bacterial Colony Optimization 27, and Intelli-

gent Water Drops algorithm 28. 

Swarm intelligence is a special class of evolutionary 

algorithm including Particle Swarm Optimization (PSO) 
111, Artificial Bee Colony (ABC) algorithm 127, and Ant 

Colony Optimization (ACO) algorithm 128.  

The beauty of nature-inspired algorithms is that they 

provide flexibility in evaluating the solutions by using 

fitness functions that score the solutions. These func-

tions vary from problem to another and evaluate using 

different information types as biological information, 

functional information, etc. Moreover, these algorithms 

provide flexibility in motif representation 129. 

Finally, the last category is a combinatorial algo-

rithm that mixes multiple algorithms. The classification 

of motif discovery algorithms is shown in figure 2. 

This paper presents a classification of motif discovery 

algorithms and gives an overview of the most common 

algorithms with many examples; also, the main fea-

tures while designing a new algorithm and future work 

are proposed.  
 

A. Enumerative approach 
The enumerative approach can be classified into 

many classes. 
 

1. Simple word enumeration 
The first class is based on simple word enumeration. 

Some existing algorithms in this class are YMF 134 

and DREME 9,29. Sinha et al 29 developed YMF (Yeast 

Motif Finder) algorithm that detects short motifs with a 

small number of degenerate positions in yeast genomes 

using consensus representation. YMF enumerates all 

motifs in the search space approach and calculates the 

z-score to produce those motifs with greatest z-scores. 

Bailey et al 9 proposed DREME (Discriminative Regu-

lar Expression Motif Elicitation) algorithm that also 

calculates the significance of motifs using Fisher’s 

Exact test. The algorithm starts with generating a set of 

short k-mers, followed by applying Fisher’s Exact test 

on two sets of DNA sequences (Input set and back-

ground set) using a significance threshold to calculate 

the significance of each word (No wildcards) of length 

three to eight that occurs in the positive sequences and 

select the 100 most significant words for being used in 

the inner loop where they passed as "seed" REs to per-

form a beam search that determines the most signifi-

cant generalizations of them (One wildcard). To find 

multiple, non-redundant motifs in a set of sequences, 

outer loop determines the most significant motif using  
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the heuristic search of RE motifs and the best motif 

found replaces its occurrences by a special letter; then 

the search process is repeated again many times until 

E-value of the new motif is less than the determined 

significance threshold.  

2. Clustering-based method 
Instead of using two loops for finding multiple mo-

tifs, the second class was proposed. Sharov et al 10 pro- 
 

posed word clustering method called CisFinder to de-

tect short motif with high processing speed in large se- 
 

Table 1. Motif discovery algorithms 
 

No. Algorithm Operating principle Ref. 

Enumerative approach 

1 YMF  

Simple word- based 

(29) 

2 DREME  (9) 
3 oligonucleotide analysis (30) 

4 CisFinder  

Simple word-based with Clustering technique 

(10) 

5 By Thomas et al  (31) 

6 POSMO (32) 

7 Weeder  

Tree-based 

(7) 

8 FMotif (11) 
9 By G. Pavesi (33) 

10 MITRA (34) 

11 CENSUS (35) 
12 RISOTTO (36) 

13 SLI-REST (37) 

14 DRIMust (38) 
15 MCES  Tree based with clustering technique (12) 

16 WINNOWER  

Graph-theoretic 

(39) 

17 Pruner  (40) 
18 cWINNOWER  (41) 

19 By Sze et al  (42) 

20 RecMotif  (43) 
21 ListMotif  (44) 

22 TreeMotif (45) 

23 GWM (46) 
24 GWM2 (47) 

25 Voting 

Fixed candidates 

(48) 

26 PMS1 (49) 
27 PMS2 (49) 

28 PMS3 (49) 

29 By Sze et al (50) 
30 PMSi (51) 

31 PMSP (51) 

32 Stemming (52) 
33 PMS4 (53) 

34 PMS5 (54) 

35 PMS6 (55) 
36 PairMotif  (56) 

37 iTriplet (57) 

38 PMSPrune 

Modified candidate 

(58) 
39 Pampa (59) 

40 PMS3p (60) 

41 Provable (61) 
42 qPMSPruneI (62) 

43 qPMS7 (62) 

44 By Tanaka et al (63) 
45 Random projection  

Hashing 

(64) 

46 Uniform projection (65) 

47 Low-dispersion projection  (66) 
48 MULTIPROFILER 

Extended sample-driven (ESD) 
(67) 

49 Pattern Branching (68) 

50 Ref Select  Reference selection (69) 
Probabilistic approach 

51 MEME  

EM 

(14) 
52 STEME  (15) 

53 EXTREME (16) 

54 Profile Branching (68) 
55 APMotif EM with clustering (70) 

56 AlignACE 

Gibbs sampling 

(17) 

57 SPWDM (71) 
58 By Lawrence et al (72) 

59 Motif- Sampler  (73) 

60 BioProspector Gibbs Sampling with hidden markov (18) 
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quences (up to 50 Mb). Firstly, one should define nu-

cleotide substitution matrix for each n-mer word, then 

calculate Position Frequency Matrices (PFMs) for n-

mer word counts with and without gaps in both test and 

control sets. To generate non-redundant motifs, PFMs 

are extended over flanking and gap regions followed 

by means of clustering. Thomas et al 31 extended the 

CisFinder technique to deal with whole ChIP-seq peak 

data sets. 
 

Table 1. Count. 
 

No. Algorithm Operating principle Ref. 

62 MITSU 
Stochastic Expectation Maximization (sEM) 

(74) 
63 MCEMDA (75) 

64 SEAM (76) 

65 By Jensen et al  

 
 

 

Baysian approach 

(13) 
66 LOGOS  (77) 

67 BaMM  (78) 

68 By Jääskinen et al   (79) 
69 By Frith et al  (80) 

70 SBaSeTraM (81) 

71 By Wakefield et al (82) 
72 MotifCut  

Graphic based 

(83) 

73 MCL-WMR (84) 
74 EPP  Entropy-based position projection (6) 

75 CONSENSUS Greedy Algorithm (85) 

76 By Huang et al heuristic algorithm (86) 
GA 

77 St-GA  

 
Simple GA 

(87) 

78 GAMI  (88) 
79 FMGA  (89) 

80 MDGA  (90) 

81 By Paul et al 
 

Clustering 

(91) 
82 By Vijayvargiya et al  (92) 

83 By Gutierrez et al  (93) 

84 GARPS 

 
Hybrid 

(94) 
85 GAEM  (95) 

86 GADEM (96) 

87 CompareProspector  (97) 
88 By Fatemeh et al  (98) 

89 GEMFA (99) 

90 MRPGA  (100) 
91 By Xiaochun et al  (101) 

92 GAME  

 

Others 

(19) 

93 By Yetian et al  (102) 

94 By Li et al  (103) 

95 MOGAMOD (104) 

PSO 
96 PMbPSO  

Standard PSO 

(4) 

97 LPBS  (105) 

98  PSOMF (106) 
99 Lei et al 

Modified PSO 

(107) 

100 Lei et al  (108) 

101 DSAPSO  (109) 
102 By Karabulut et al  (110) 

103 Lei et al (111) 

104 Hardin et al  
 

Hybrid 

(112) 
105 GSA-PSO   (113) 

106 SPSO-Lk  (114) 

ABC algorithm 
107 Multiobjective ABC 

 
ABC 

(115) 

108 MO-ABC/DE  (116) 

109 Consensus ABC  (8) 

ACO algorithm 

110 Machhi et al  
ACO with Gibbs sampling 

(117) 

111 MFACO (118) 
112 Cheng et al ACO with EM (119) 

CS algorithm 

113 MACS  CS (120) 
Combinatorial 

114 STGEMS 
Enumerative and probalistic approaches 

(121) 

115 MDScan (122) 
116 MUSA Probabilstic and machine learning approaches (123) 

117 EMD Multiple algorithms (124) 
118 MobyDick 

Dictionary 
(125) 

119 WordSpy (126) 

 

https://www.researchgate.net/profile/Fatemeh_Zare-Mirakabad/publication/285295633_PSOMF_An_algorithm_for_pattern_discovery_using_PSO_Proceedings_of_the_Third_IAPR_International_Conferences_on_Pattern_Recognition_in_Bioinformatics_Melbourne/links/5789b2a808ae7a588ee87417.pdf
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3. Tree-based method 
The third class is a tree -based search to accelerate 

the word enumeration technique. Pavesi et al 7 present-

ed Weeder algorithm based on count matching patterns 

with specific and most extreme mismatches. At first, 

the motifs are represented using consensus sequence 

and based on the difference between the k-mers of the 

input sequences and the consensus under a limited 

number of substitutions, k-mers are assembled and 

each group is evaluated with a specific measure of sig-

nificance. The constructed suffix tree was proposed in 

FMotif 11 algorithm for finding long (l, d) motifs in 

large DNA sequences under the ZOMOPS (Zero, one 

or multiple occurrence(s) of the motif instance(s) per 

sequence) constraints. This proposed tree is faster than 

standard suffix tree as it avoids a large number of re-

peated scans of sequences on the suffix tree. After-

ward, Qiang et al 12 proposed MCES  algorithm for a 

PMP that used both suffix tree and parallel processing 

to deal with large datasets. MCES algorithm starts with 

mining step that constructs the Suffix Array (SA) and 

the Longest Common Prefix array (LCP) for the input 

datasets. At that point, combining step clusters sub-

strings of various lengths to get predicted motifs. 
 

4. Graph theoretic-based method 
The graph-theoretic method represents a motif in-

stance, as a clique; the graph G is built by representing 

each l-mer in the input sequences by vertex and the 

edge between a pair of vertices representing a pair of l-

mer in different input sequences having the Hamming 

distance between the substrings which is less than or 

equal to 2d. Then, cliques of size N are searched for in 

this graph. Popular graph-theoretic methods are WIN-

NOWER 39, Pruner 40, and cWINNOWER 41. 

 

5. Hashing-based method 
Buhler et al 64 developed random projection algo-

rithm for a PMP that projects every l-mer in the input 

data into a smaller space by hashing. Initially, a projec-

tion of l-dimensional space onto a k-dimensional sub-

space for all subsequences in the input set is developed, 

and random projection is constructed by choosing ran-

dom k positions from l position. Using this projection, 

each l-mer is hashed to its corresponding bucket. After 
 

projections, each bucket contains l-mer more than a 

threshold and this is called qualified bucket. Random 

hashing is repeated n times to ensure the qualified buc-

ket at least more than once. Finally, profile for each of 

them should be computed to get the most probable l-

mer in the sequence that was represented as consensus 

sequences. In previous studies, random projection was 

developed using uniform projection and low-dispersion 

projection algorithms, respectively 65,66. 
 

6. Fixed candidates and modified candidate-based methods 

The sixth class is fixed candidates that select candi- 
 

date motifs from input sequences and use them for mo-

tif scanning while the seventh class is modified candi-

date that selects one candidate from the input sequence 

and modifies it letter by letter.  

Finally, there is a proposed algorithm called Ref-

Select 69 to select reference sequences for PMP. The 

reference sequences are the sequences that don’t con-

tain motif instances, so, this method tries to select the 

reference sequences that generate a small number of 

candidate motifs as possible. The algorithm consists of 

two steps; firstly, for every two sequences in input da-

taset D, the number of candidate motifs generated from 

them should be computed using the Hamming distance 

between every two l-mers. Then, the set with candidate 

Figure 2. Classification of motif discovery algorithms as enumerative, probabilistic, nature inspired and combinatorial types. 
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motifs, as small as possible, is selected as a reference 

set. 
 

B. Probabilistic approach 

Deterministic approach: Expectation-Maximization 

(EM) 130 is the famous example of deterministic ap-

proach. EM for motif finding was first introduced by 

Lawrence et al 132 and it consists of two main steps, the 

first called "Expectation step" that estimates the values 

of some set of unknowns based on a set of parameters. 

The second step is "Maximization step" that uses those 

estimated values to refine the parameters over several 

iterations. EM is used to identify conserved areas in 

unaligned DNA and proteins with an assumption that 

each sequence must contain one common site, the pa-

rameters; in this case, they are the entries in the PWM 

and the background nucleotide probabilities while our 

unknowns are the scores for each possible motif posi-

tion in all of the sequences. 

There are several algorithms based on EM. MEME 

(Multiple EM for Motif Elicitation) 14 is a popular mo-

tif recognition program that optimizes PWMs using the 

EM algorithm. It has several versions 132-136. The idea 

of MEME algorithm is to find an initial motif and then 

use expectation and maximization steps to improve the 

motif until the values in the PWM do not improve or 

the maximum number of iterations is reached. The 

MEME algorithm starts from a single site, i.e. k-mer 

(Random or specified) and estimates motif model 

(PWM). For every possible location in every input se-

quence, the probability, given the PWM model, should 

be identified to detect examples of the model; then, the 

motif model should be re-estimated by calculating a 

new PWM. EM alternates between examples of the 

model step and re-estimates the motif model step. A 

single iteration for each k-mer in target sequences 

should be performed and the best motif from this site 

needs to be selected and then only the one to converge 

should be iterated. The algorithm searches for new 

motifs after erasing the old discovered motif. It defines 

all three types of motif discovery sequence model: 

OOPS, ZOOPS, and TCMs corresponding to one oc-

currence per sequence, zero or one occurrence per se-

quence, and zero or more occurrences per sequence, 

respectively. Reid et al 15 presented STEME (Suffix 

Tree EM for Motif Elicitation) algorithm to accelerate 

the MEME algorithm and the first application of suffix 

trees to EM algorithm was considered. Quang et al 16 

also tried to accelerate the MEME algorithm by devel-

oping EXTREME (Online EM algorithm for motif dis-

covery) algorithm. EXTREME is an online web server 

that implements the MEME algorithm and can work on 

a large dataset without discarding any sequences. 
 

2. Stochastic approach 
Gibbs sampling 72 is a famous stochastic approach, 

similar to EM algorithm. Pseudocode of the Gibbs 

sampling algorithm for motif detection follows these 

steps 130: 

 Random initializing of motif positions in the input N 

sequences with an assumption of the presence of one 

motif per sequence, 

 Choosing one sequence at random, 

 Computing PWM for the other N-1 sequences using 

staring positions of motifs and background probabili-

ties for each base using the non-motif positions, 

 Calculating probability of each possible motif loca-

tion in the removed sequence using PWM and back-

ground probabilities, 

 For the removed sequence, choosing a new starting 

position based on step 4. 

Steps 2-5 should be iterated until the values in the 

PWM do not improve or the maximum number of iter-

ations has been reached. 

Many methods 17,18 have been developed that im-

plement the concept of Gibbs’ sampling to extend its 

functionality. Hughes et al 17 proposed Align ACE 

(Aligns Nucleic Acid Conserved Elements) algorithm 

based on Gibbs’ sampling with some improvements: 

(1) The motif model was changed to fit the source ge-

nome because the base frequencies for non-site se-

quence is fixed, (2) Both strands of the input sequence 

are considered and no circumstance overlapping is al-

lowed, (3) Iteratively, aligned sites were masked out to 

find multiple different motifs, and (4) It uses an im-

proved near-optimum sampling method.  

BioProspector 18 algorithm is also based on Gibbs’ 

sampling with several improvements: (1) It uses a Mar-

kov model estimated from all promoter noncoding se-

quences to represent the non-motif background in order 

to improve the motif specificity, (2) It can find two-

block motifs with variable gap, and (3) Sampling with 

two thresholds allows every input sequence to include 

zero or multiple copies of the motif. 
 

3. Advanced approach 
Different algorithms were proposed based on Bayes-

ian approach 137. Jensen et al 13 proposed an algorithm 

based on Bayesian approach with Markov chain Monte 

Carlo. Xing et al 77 proposed LOGOS (Integrated LO-

cal and GlObal motif sequence model) algorithm that 

combines between HMDM (Hidden Markov Dirichlet-

Multinomial) for local alignment model for each dif-

ferent motif and HMM (Hidden Markov model) for 

global motif distribution model for the occurrence of 

multiple motifs. 

Recently, Siebert et al 78 developed a Bayesian Mar-

kov Model (BaMM) approach that trains higher order 

Markov models to build the dependency model. BaMM 

algorithm is more complex than PWMs wherein the 

PWMs cannot model correlations among nucleotides 

because PWMs nucleotide probabilities are independ-

ent of nucleotides at other positions. In the proposed 

algorithm, Bayesian approach using Markov models 

makes optimal use of the available information while 

avoids training by the decrease in number of parame-

ters.  
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Other different algorithms 79,80 were presented like 

clustering methods based on Bayesian approach. 
 

4. Others 
EPP (Entropy-based position projection) 6 algorithm 

was proposed to escape from local optima. This algo-

rithm based on projection process depends on the rela-

tive entropy in each position of motif instead of ran-

dom projection. 
 

C. Nature-inspired algorithms 
Nature-inspired algorithms are classified according 

to the sources of inspiration into three main categories 
138. They are swarm-intelligence, non swarm-intelli-

gence and physics/chemistry as shown in figure 2. 

Popular evolutionary algorithms used in motif discov-

ery are GA and PSO and few of them are ABC, CS, 

and ACO. 
 

1. GA 
GA is a probabilistic optimization algorithm based 

on evolutionary computing. GA is inspired from bio-

logical evolution processes like selection, crossover, 

and mutation. The motivation for using GA comes 

from the idea of reducing the number of searches in a 

high number of DNA sequences. The basic structure of 

GA consists of a population of candidate solutions 

throughout several generations to find the best solution 

or set of possible solutions. The algorithm starts with 

the random generation of individuals that are then 

evaluated by a fitness function. At that point, a selec-

tion process selects new individuals called offspring 

that have some features of the parents and the others 

are discarded, then the genetic operators are applied on 

offspring. The parents are selected based on a probabil-

istic process biased by their fitness value using speci-

fied selection techniques that keep the diversity of the 

population large and prevent premature convergence 

on poor solutions. The most common technique for 

parent selection is the roulette-wheel method. In a rou-

lette wheel selection, based on the number of individu-

al say n, the circular wheel is divided into n pies. The 

size of each pie is proportional to the fitness of the el-

ement. The roulette wheel is spun randomly and the 

element where it stops is chosen as the parent. The 

selected two individuals are used to produce offspring; 

this means the elements of higher chance for selection 

have higher fitness. 

After two selections of parents, a crossover is ap-

plied to select a random site, and the rightmost strings 

are swapped to produce new children, followed by ap-

plying the mutation process by changing the value of 

some selected position. The process is iteratively re-

peated until some stop criterion is reached on the satis-

factory fitness level 139. Some methods 89,90 use stand-

ard GA. Liu et al 89 introduced FMGA algorithm that is 

based on simple GA. The genetic operators were spe-

cialized for motif discovery problem; the mutation op-

erator was applied using PWM to reserve the complete-

ly conserved positions and the crossover operator was 

implemented with specially-designed gap penalties that 

optimize a scoring function. Che et al 90 proposed 

MDGA algorithm that is also based on simple GA. 

Other methods were proposed and most of them 91-93 

used population clustering technique that partitions 

population into subpopulations before mating. Cluster-

ing is done by the similarity between solutions using 

data clustering algorithms.  

Using population clustering technique, Paul et al 91 

proposed an algorithm for PMP to detect multiple and 

weak motifs. Firstly, population initialization by ran-

dom selecting of subsequences of motif length used to 

form a candidate consensus motif is done and then all 

input sequences are scanned to detect all similar sub-

strings followed by sorting them according to a number 

of mismatches of each substring from the candidate 

motif. Next, scoring function is applied on them. This 

method was extended to detect weak motifs using 

alignment score metric and clustering technique. Final-

ly, fitness of an individual (Cluster) is calculated to 

select the parents for using in GA. Vijayvargiya et al 92 

proposed an algorithm with the position based repre-

sentations of individual and clustering of population 

scheme. Gutierrez et al 93 proposed a new statistical 

GA that mixes GA structure with several statistical 

coefficients. In this method, all the input sequences are 

joined in a single super-sequence and the individuals 

are represented by a single position value; at that point, 

the super-sequence is separated into subsequences of 

any length regardless of the length of each sequence. 

For each generation of the population, the fitness value 

will be calculated against one of the subsequences. The 

fitness function is a combination of different functions 

applied at different moments of the process. The algo-

rithm is started by checking if they are overrepresented 

in the given subsequence by calculating the difference 

of similar words between the candidate motif and the 

background motif. Then, the selection process is ap-

plied consisting of two steps; the first is using the 

Fluffiness Coefficient by the mean and standard devia-

tion of the simple overrepresentation values and the 

individuals with the lowest Fluffiness value are elimi-

nated from the population. The second step is using 

different coefficients to decide if the candidates are the 

final solutions of the problem or not for an individual 

has survived for at least 10 generations. The first coef-

ficient is Thinness coefficient where the individuals 

with a Thinness coefficient above 0.6 are eliminated 

from the population. Mann-Whitney is the second coef-

ficient for two populations to quantify, if one of them 

has a tendency to have larger values than the other. The 

first sample corresponds to the vector with the values 

stored for the number of similar words for the candi-

date motif in each generation, and the second sample is 

formed by the same values for the background motif. If 

the probability of both data samples coming from the 

same population is lower than 0.05, at that point, the 

motif is considered as a possible final solution. The 
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third step is the creation of offspring by applying ge-

netic operators, one-point crossover, and random muta-

tion, on the selected parents. Finally, filtering and clus-

tering of solutions is another method for every given 

motif width to generate the final solutions.  

Some methods enhance the GA by using hybrid 

methods that combine GA with another technique 94-

96,140 or propose additional operators in addition to 

basic genetic operators 19,102. 

Huo et al 94 proposed a new algorithm (GARP) that 

optimizes GA based on the random projection strategy 

(RPS) to identify planted (l, d) motifs. The idea behind 

using RPS before GA is to find good starting positions 

for being used in simple GA as an initial population 

instead of random population. Wang et al 95 presented 

GAEM algorithm that combines GA and EM for plant-

ed edited (l, d)-motif finding problem. In planted edited 

(l, d) -motif finding problem, the mutation in motifs 

due to substitution, deletion, and insertion, causes the 

motifs to have different lengths ranging from l-d to l+d. 

The EM algorithm is used after the random initial pop-

ulation to get the best starting positions to be used as a 

seed to GA. Wei et al 19 introduced GAME (Genetic 

Algorithm for Motif Elicitation) that proposes two op-

erators called ADJUST and SHIFT to escape from lo-

cal optima. The ADJUST operator escapes from a local 

optimum that occurs if any of the motif sites has not 

been aligned correctly by checking every possible site 

position in a sequence and choosing the best match to 

the sites in the other sequences. But SHIFT operator 

escapes from local optima that occur when all motif 

sites are slightly misaligned by shifting the subse-

quences in the direction which gives the best fitness. 

Yetian et al 102 also presented a new operator called 

addition to the standard GA operators. The algorithm 

started with a motif length of three and then the pro-

posed operator is used until the length of the optimal 

motif reaches to the standard level. The result achieves 

a  higher score than the other three methods: Gibbs 

Sampler 141, GA 142 and GARPS 94 algorithm.  
 

2. PSO 
PSO is a new global optimization technique 143 for 

solving continuous optimization problems. PSO algo-

rithm is characterized by its simple computations and 

information sharing within the algorithm. It simulates 

the social behaviors of organisms movements in flocks 

of birds or schools of fish to find food sources and de-

fenses against predators. Each particle uses its own 

flying experience and flying experience of other parti-

cles to adjust its "flying" so it combines self-expe-

riences with social experiences. In self-experiences, the 

particle tries to get local best particle position and this 

is done by the particle stores. The best solution visited 

so far in its memory is called pbest, and it has an at-

traction towards this solution as it navigates through 

the solution search space. Social experiences are uti-

lized to get best global particle position through the 

particle stores and the best solution visited by any par-

ticle and attraction towards this solution is called gbest. 

For an n-dimensional search space, the position and 

velocity of the ith particle are represented by Yi= (yi1, 

yi2, …, yin) and Vi= (vi1, vi2, vi3 …, vin), respective-

ly. The previous best position is denoted as Pi= (pi1, 

pi2, …, pin). Pg is the global best particle in the 

swarm. For the swarm S, the new velocity of each par-

ticle is calculated according to the following equation: 

Vin (t+1) = vin (t)+c1 r1 (pin-yin) +c2 r2 (pg-yin) 

(1) The position is updated using:  

Yin (t+1) = Yin (t)+ Vin (t+1)                            

(2) Where i = 1, 2… S represents the particle index and 

n=1, 2… N represents the dimension. c1 and c2 are 

cognitive and social scaling parameters, respectively. 

At each iteration, pbest and gbest are updated for 

every particle as per their fitness values. The procedure 

is iteratively repeated until some stop criterion is re-

ached or satisfactory fitness level has been reached.  

PSO has wide applications and has been proven to 

be effective in motif finding problems 112. In recent 

years, there are few numbers of researches which uti-

lized PSO to solve different types of motif finding 

problems. Chang et al 144 proposed a modified PSO 

algorithm where the position and velocity are adjusted 

to escape from local optima. Hardin et al 112 proposed a 

hybrid motif discovery approach based upon a combi-

nation of PSO and EM algorithm and PSO was utilized 

to generate a seed for the EM algorithm. In previous 

studies, modified PSO algorithm was proposed based 

on word dissimilarity graph 107,108. Modified PSO algo-

rithm began to break all input sequences into l-mers 

and develop a novel mapping scheme that was used in 

the fitness function. Each particle kept track of a vector 

of locations in each given sequence and formed a con-

sensus sequence. Then, the updated policy of PSO was 

modified where the new and current motif positions 

must be in the upper and lower bounds of the velocity. 

To escape from local optima, the algorithms scan all 

input sequences after gbest value reaches to a certain 

threshold to check if l-mer has a fitness value in com-

parison to gbest. Also, the method used "reset move" 

that moves all the current solution, pbest and gbest by a 

random distance. Finally, the termination criteria are 

determined automatically using repeat -based method.  

Reddy et al 4 developed PMbPSO (PSO-based algo-

rithm for Planted Motif Finding) algorithm. PMbPSO 

algorithm selects initial positions for all motifs by ran-

dom and generates ten children for each parent (Motif) 

and then computes the fitness function for each parent 

and its children to get the best position; at that point, 

the best position from all particles is got followed by 

updating velocity and position for each particle for a 

number of iterations. Haruna et al 105 integrate Linear-

PSO with binary search technique (LPBS) to minimize 

the execution time and increase the validity in motif 

discovery of DNA sequence for specific species. LPBS 

algorithm starts with initializing the population by se-

lecting the target motif from the reference set and 



13

8 

Review of Different Sequence Motif Finding Algorithms 

Avicenna Journal of Medical Biotechnology, Vol. 11, No. 2, April-June 2019     138 

(4) 

searching for similar motifs using the binary search, 

then applying the standard PSO algorithm to discover 

motifs. Recently, Ebtehal et al 113 introduced a hybrid 

GSA-PSO algorithm that combines local search capa-

bilities of the Gravitational Search Algorithm (GSA) 

and global search capabilities of PSO algorithm. 
 

3. ABC algorithm 
ABC algorithm is a type of swarm-based algorithm 

proposed by Karaboga 145. It simulates the behavior of 

honey bees to find a food source. Two fundamental 

properties to obtain swarm intelligent behavior in hon-

ey bee colonies are self-organizing and division of la-

bor. The bee colony contains two main groups which 

are employed and unemployed foragers. Employed 

bees are going to the food source which is visited pre-

viously and they are responsible for giving information 

to unemployed foragers about the quality of the as-

signed nectar supply. Many factors determine the value 

of a food source like its distance from the nest, its en-

ergy concentration and the degree of difficulty to ex-

tract this energy. Unemployed bees are categorized to 

scout and onlooker bees. Scout bee searches around the 

nest randomly to find new food sources while onlooker 

bee uses the information shared by employed foragers 

to establish a food source. 

Employed bees’ numbers are the same for food 

sources’ numbers around the hive. At first, scout bees 

initialize all positions of food sources that represent 

possible solutions to the problem. Then, employed bees 

and onlooker bees exploit the nectar of food sources 

that corresponds to the quality (Fitness) of the associat-

ed solution, and this continual exploitation will finally 

cause them to become exhausted. The employed bee 

which turned into exploiting the exhausted food source 

turns into a scout bee looking for other food sources. 

The ABC algorithm involves four fundamental phases: 

A neighbor food source FS is determined and calculat-

ed by the following equation: 

FSi=fi + rand (-1, 1) * (fi - fk) (3) 

Where i is a randomly selected parameter index, fk is a 

randomly selected food source, rand (-1, 1) is a random 

number between -1, 1. 

The fitness of this new food source is calculated and 

a greedy selection is applied between it and its parent 

i.e. between FS and F. From that point, employed bees 

share information about their food source via dancing 

on the dancing area with onlooker bees waiting inside 

the hive.  

Gonzalez-Alvarez et al 115 developed multiobjective 

ABC algorithm that aims to adapt the ABC algorithm 

to multiobjective context. The multiobjective optimizes 

more than one objective function at the same time to 

get a set of optimal solutions known as Pareto set. This 

algorithm defines three conflicting objectives as motif 

length, support, and similarity and multiobjective adap-

tations of ABC including multi-term fitness function, 

ranking, and sorting methodology are used. González 

et al 116 proposed Multiobjective Artificial Bee Colony 

with Differential Evolution algorithm (MO-ABC/DE) 

that combines the general schema of ABC with Differ-

ential Evolution. Recently, Karaboga et al 8 proposed 

consensus ABC algorithm. This is a discrete model 

based on a similarity value between consensus se-

quences of the ABC algorithm. The algorithm starts 

with random initialization, and then calculates the simi-

larity value of the resultant consensus sequence fol-

lowed by a new neighborhood selection method that is 

based totally on the similarity values of the consensus 

sequences.  
 

4. ACO algorithm  
The ACO algorithm 128 is a metaheuristic optimiza-

tion technique that mimics the behavior of real ants, 

which try to find the shortest path to the food from 

their nest. The ants explore randomly the area sur-

rounding their nest, and while moving, they leave a 

chemical pheromone trail on the ground that helps 

them to go to the nest. Ants interact with each other 

through this chemical component. The quantity of 

pheromone is proportional to the quantity and the qual-

ity of the food and this pheromone will be guided to 

other ants for the food source. When evaporation oc-

curs, it reduces the attractive strength of pheromone. 

The evaporation takes a long time in the shorter 

path than the longest. The ants choose their way with 

strong pheromone concentrations. The characteristics 

of ACO algorithm are: (1) It depends on two variables 

including the amount and the evaporation of phero-

mone. The amount of pheromone is directly propor-

tional to the richness of the food and inversely to evap-

oration; evaporation factor avoids the convergence to a 

locally optimal solution, (2) Ants act concurrently and 

independently, and (3) The behavior is stigmergy i.e. 

the interaction between ants is indirect, (4) Ants can 

explore vast areas without global view of the ground, 

(5) Starting point is selected at random. 

The pheromone probability in terms of motif discovery 

is given by: 
                                                           

 

 
 
 

Where Pa (ic) is the probability of ant a choosing c in 

position l, ic is the heuristic information to measure 

the frequency of letter c in input sequences, i.e. the 

weight of the letter c, β and α represent the influence of 

the pheromone trails, c is the character set of input se-

quences, ic (t) is the amount of pheromone on the 

character c at position l at time t, and iu (t) is the 

amount of pheromone on neighborhood at position l 

which ant a has not visited yet at time t. An updated 

pheromone trial is: 

(5) 
 

Where yic is the total number of ants, which carry the 

character c at position l, p is the rate of the pheromone 

trails evaporation (0<p<1), and  is the variable of 

pheromone deposited by kth ant on the character c at 
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position l. A lot of methods used ACO algorithm in 

motif discovery. Machhi et al 109 used ACO  algorithm 

with a Gibbs sampling algorithm. An ACO algorithm 

finds better starting positions of the sequences provid-

ed as starting position for the Gibbs sampler method 

instead of random initialization. This algorithm starts 

with each ant choosing the path to construct a sample 

with motif length (m) and that depends on pheromone 

probability. Then, each ant is compared between the 

selected sample (m) and each substring in input se-

quences to get the set that represents the best matching 

substrings. Next, fitness function for each selected set 

is calculated. After that, the amount of pheromone is 

updated and finally iterated until no change.  
 

5. CS algorithm 
CS is a new simple heuristic search algorithm that is 

more efficient than GA and PSO 146-148. CS is inspired 

from brood parasitism reproduction behavior of some 

cuckoo species in combination with Lévy flight behav-

ior 149. The cuckoos lay their eggs in nests of the other 

birds with the abilities of selecting the lately spawned 

nests and removing existing eggs to increase the hatch-

ing probability of their eggs. If host birds discover 

these eggs, they either throw them away or abandon the 

nest and build a new nest. CS is characterized by the 

subsequent rules:  

Each cuckoo lays one egg at a time and disposes its 

egg in a random selected nest. 

The nests that have high quality of eggs (Solutions) 

are the best and will continue to the following genera-

tions. 

The number of accessible host nests is fixed, and a 

host bird can discover a parasitic egg with a probability 

Pa E [0,1]. 

To simulate the behavior of cuckoo reproduction, 

each egg in a nest is a solution and each cuckoo’s egg 

is a new solution. The aim is to supplant a not-so good 

solution in the nests with newer and better solutions by 

Lévy flights: 
 

(6) 

Where is a new solution, is the current loca-

tion, α is the step size and Levy() is the transition 

probability or random walk based on the Lévy flights. 

CS is an effective global optimization algorithm and 

has many applications in different fields 150. Ebtehal et 

al 120 applied CS and Modified Adaptive Cuckoo 

Search (MACS) algorithm on PMP. The MACS algo-

rithm enhances the basic CS algorithm by grouping 

parallel, incentive, information and adaptive strategies. 

 

DNA Motif Databases 
 

Synthetic DNA sequences  

The simulated data set was first introduced by 

Pevzner et al 39 to create planted (l, d) motif in n se-

quences selected randomly from a set of N sequences 

where n≤N. There are online sites 151,152 to automatic-

ally create planted (l, d) motif. 
 

Real DNA sequences 
There are several online databases of DNA motifs 

listed in table 2 with a short description of each one. 

 
Discussion 

 

As sequencing technology has improved, the vol-

ume of biological sequence data in public databases 

increases and this increases the importance of motif 

discovery in computer science and molecular biology 
153. Motif discovery has some difficulties: (1) Motifs 

are not identical to each other, (2) The motif sequence 

is unknown, (3) Motif location is unknown, (4) Exist-

ing of random motifs, and (5) The location of a motif 

in each sequence is unrelated to other ones. 

The motif discovery algorithms are classified into 

two major groups as enumerative approach and proba-

bilistic approach. As the name of the first class imparts, 

it is counting and comparing oligonucleotide frequen-

cies for all possible motifs, based on specific motif 

model description. It has some advantages: (1) Global 

optimality, (2) It is appropriate for short motifs; there-

fore, it is useful for motif finding in eukaryotic ge-

nomes, (3) With optimized data structures, it becomes 

Table 2. Real datasets of DNA motifs 
 

Database Link Description 

TRANSFAC  http://gene-regulation.com/pub/databases.html 
TRANSFAC is the database of eukaryotic TFs, their genomic binding sites, and 

DNA-binding profiles 

JASPAR  http://jaspar.genereg.net/ A public dataset of motifs for multicellular eukaryotes 

PROSITE  http://prosite.expasy.org/ 
PROSITE includes documentation sections describing protein domains, families 

and functional sites in addition to related patterns and profiles to recognize them 

YEASTRACT  http://www.yeastract.com/ 
It contains predicted TFs for S. cerevisiae. 

SCPD  http://rulai.cshl.edu/SCPD/ 

RegulonDB  http://regulondb.ccg.unam.mx/ 
Provides curated information on the transcriptional regulatory network of E. coli 
and contains both computational as well as experimental data of predicted objects 

CisBP http://cisbp.ccbr.utoronto.ca/ It contains a list of >160,000 predicted TFs from >300 species 

DBTBS  http://dbtbs.hgc.jp/ It contains TFs for Bacillus subtilis 

 

http://gene-regulation.com/pub/databases.html
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fast, and (4) Can find totally constrained motifs. How-

ever, the problems of this approach are: (1) It needs to 

be post-processed with some clustering systems as the 

typical transcription factor motifs often have several 

weak constrained positions, (2) It suffers from the pro-

blem of producing too many spurious motifs, (3) It re-

presents certain numbers of motifs (11 wild cards), and 

(4) Long time processing is another problem as it 

checks every possible substring in the input dataset. 

There are many algorithms based on sub-categories 

of this approach. The first sub-category is based on the 

enumerative approach without any enhancement; this 

leads to getting all possible motifs but at the same time 

there are many disadvantages which were mentioned 

above. YMF is designed for yeast genomes, it can’t 

detect motifs with large length or the number of degen-

erate positions is significant. DREME is a discrimina-

tive motif discovery tool to discover multiple, short, 

non-redundant, statistically significant motifs in short 

runtime using simplified form of regular expression 

words (11 wildcard characters). DREME algorithm was 

tested on ChIP-seq datasets [13 mouse ES Cell 

(mESC), 3 mouse erythrocytes and one human cell line 

(ChIP-seq datasets)]. DREME is compared to MEME 

algorithm and the results show that DREME algorithm 

can correctly predict motifs on ChIPseq experiment se-

quences in a shorter runtime than MEME. However, it 

can only find short motifs (from 4 to 8 bp) and an oc-

currence of the motif is well defined, as is the number 

of possible motifs of a given width.  

The second sub-category is based on simple enu-

merative approach but it can discover multiple and 

weak motifs at the same time so, it is considered as the 

small enhancement of simple-based method. CisFinder 

technique tested on ChIP-seq data of TFs was ex-

pressed in ES cells. CisFinder can accurately identify 

PFMs of TF binding motifs and it is faster than MEME 
133, WeederH 154, and RSAT 31. CisFinder can find mo-

tifs with a low level of enrichment, but it does not sup-

port outputting motifs of a specified length. 

The algorithm proposed is similar to CisFinder algo-

rithm, but it supports outputting motifs of a specified 

length 31. They reported that this algorithm combined 

accuracy and low computational time, but it is limited 

to short (l, d) motifs. 

The first two sub-categories have nearly the same 

disadvantages, but they are time-consuming. There are 

many suggestions to improve this problem; in tree-

based methods, it is also based on enumerating all pos-

sible motifs but it is time-consuming using suffix tree. 

Weeder algorithm accelerates the word enumeration 

technique by using a suffix tree, but it operates with a 

low efficiency for long motifs 11. FMotif algorithm 

could identify unknown motif lengths on ChIP-

enriched regions. Next, MCES algorithm is a more 

powerful algorithm and there are two contributions in 

the miming step; it uses an adaptive frequency thresh-

old for each possible length and it is based on Map 

Reduce strategy to deal well with very large datasets. 

The MCES is tested on simulated data and real data 

(ChIP-seq) and the results show that MCES can find 

the motif like the published one and run in a short time. 

MCES has many advantages like identifying motifs 

without OOPS constraint, handling very large data sets, 

handling the full-size input sequences and making full 

use of the information contained in the sequences, 

completing the computation with a good time perfor-

mance and good identification accuracy. 

Graph-based techniques are the same simple-based 

techniques but they represent the motif-instance by a 

graph to facilitate the search strategy. 

There are many search strategies to enhance time 

operator. 

Sub categories from five to seven try to enhance 

time operator using random concept whether random 

searching about the motif like hashing strategy or se-

lecting random candidate motif or many candidate mo-

tifs. 

However, the random projection algorithm takes 

long time operations as it depends on random initializa-

tion and it repeats the process for n times. 

In fixed candidates and modified candidate-based 

techniques, the technique scans all input sequences to 

get the matched motifs. 

In the probabilistic approach, the probability of each 

nucleotide base to be present in that position of the 

sequence is multiplied to yield the probability of the 

sequence. PWM is an appealing model due to its sim-

plicity and wide application and it can represent an 

infinite number of motifs 15 but it has some problems 
155: (1) It scales poorly with dataset size, (2) PWM rep-

resentation assumes the independence of each position 

within a binding site, while this may be not true in real-

ity, and (3) It converges to locally optimal solution.  

EM algorithm is a popular example of probabilistic 

approach, but it has some limitations: (1) It converges 

to a local maximum, (2) It is extremely sensitive to 

initial conditions, (3) It assumes one motif per se-

quence, and (4) The running time of EM is linear with 

the length of the input sequences. MEME added sever-

al extensions to overcome these limitations where 

MEME runs the EM algorithm many times from dif-

ferent starting points using every existing l-mer in the 

sequence dataset. However, the running time scales 

poorly with the size of the dataset so, MEME algorithm 

can discover motifs in a satisfactory time by a com-

promising strategy such  as discarding a majority of the 

sequences but discarding data is far from ideal as it can 

decrease the chance of discovering motifs correspond-

ing to infrequent cofactors 156. STEME runs faster than 

the MEME algorithm, but with a large dataset, it finds 

motifs up to width 8 as its efficiency decreases quickly 

as the motif width increases. EXTREME achieves bet-

ter running time, but at the same time, it requires too 

much storage space for processing large data. Gibbs 

sampling algorithm is another example of a probabilis-
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tic approach. It converges to local optimum, and is less 

dependent on initial parameters, but more dependent on 

all sequences exhibiting the motif. Advanced methods 

based on Bayesian technique are a subclass of proba-

bilistic approach; examples of this class are the speedy 

algorithms with better objective function and BaMM 

algorithm 13. BaMM was tested on 446 human ChIP-

seq datasets and the results show that the precision 

increases by 30-40% compared to PWM. However, 

BaMM algorithm has some limitation: (1) It uses EM 

algorithm which has some disadvantages as described 

above, (2) The running time is longer than EM algo-

rithm which makes it difficult to apply on a big data 

set, (3) It defines ZOOPS model only, and (4) It re-

quires motif length as an input parameter. Finally, EPP 

algorithm can be applied to OOPS, ZOOPS, and TCM 

sequence models and the results indicate that it can 

efficiently and effectively recognize motifs. 

Evolutionary algorithms have been recognized due 

to their advantages of synthesizing local search and 

global search 94. GA and PSO are the famous evolu-

tionary algorithms. GA is a discrete technique, but PSO 

is a continuous technique that must be modified to 

handle discrete design variables. GA and PSO are simi-

lar in the presence of interaction between the popula-

tion’ members, but unlike GA that changes the popula-

tion from generation to another, PSO keeps the same 

population; moreover, PSO does not have genetic op-

erators and no notion of the "survival of the fittest". 

Based on GA, a lot of algorithms are proposed. The 

simple GA favors selection of the fittest, which may be 

a biologically meaningless solution and this tends to 

remove the diversity of the population. Simple GA 

identifies OOPS model only and ignores ZOOPS and 

TCM models which are not correct because some se-

quences contain multiple or other weak motifs that also 

need to be identified 157. FMGA and MDGA algo-

rithms are examples on simple GA. FMGA performs 

better than MEME and Gibbs sampler algorithms. 

MDGA algorithm is compared with a Gibbs sampling 

algorithm when tested on real datasets 158 and the re-

sults showed that it achieves higher accuracy in short 

computation time; the computation time does not ex-

plicitly depend on the sequence length. To overcome 

simple GA problems, clustering approach was present-

ed. Clustering scheme enables to retain the diversity of 

population over the generations and it can find various 

motifs. Based on clustering technique, a new scoring 

function was developed that takes some consideration 

like, the number of mutations, and the number of mo-

tifs per sequence 91. The authors reported that it gives 

effective result when it’s applied to simulated and real 

data. Previous methods presented by Vijayvargiya et al 
83 could identify multiple motifs of the same length and 

discover long motifs when tested on synthetic and real 

datasets 92. Gutierrez et al 93 presented a new algorithm 

that has many advantages; there are no assumptions 

about the presence of the motifs in the input sequences, 

it is a heuristic algorithm, variable-length gaps can be 

predicted, and the background set of sequences is gen-

erated by shuffling the candidate motifs instead of 

shuffling the sequences themselves. The algorithm was 

tested on 52 data sets of four different organisms and 

the efficiency was compared with 14 methods using 

eight statistics. The proposed method gives its best 

results with fly and mouse data sets. However, when 

connecting all input sequences into one sequence and 

then dividing it, it may cause loss of motifs. Based on 

hybrid methods, GARP algorithm is better than the 

projection algorithm when tested on both simulated 

and real biological data, while GAEM algorithm tested 

on a simulated dataset, gives a success rate higher than 

HIGEDA 140 and when tested on a real dataset, it per-

forms better than HIGEDA, GLAM2, and MEME. 

Finally, based on algorithms that enhance genetic oper-

ators, the GAME algorithm performs better than 

MEME and BioProspector when applied on simulation 

and real-data; the algorithm presented by Fan et al 102 

has a higher score than the other three methods of 

Gibbs Sampler 141, GA 142, and GAR-PS 94. 

From the proposed algorithms based on GA, it can 

be concluded that the methods presented previously 
19,90,92,94,102 used simple fitness function although there 

are a lot of suggestions to improve this function. 

Though the methods proposed by Paul et al, Vi-

jayvargiya et al, and Gutierrez et al 91-93 can identify 

ZOOPS model, they cannot identify multiple motifs of 

variable lengths instead of multiple motifs of the same 

lengths. Methods by Paul et al and Vijayvargiya et al 
91,92 ignore the TCM model, while a method by 

Gutierrez et al 93 identifies it. The methods of Paul et 

al, Vijayvargiya et al, and Gutierrez et al 91,93 enhance 

the selection strategy by proposing new fitness func-

tion. The methods proposed by Huo et al and Wang et 

al 94,95 enhance the GA algorithm by combining it with 

another algorithm to get the starting positions to be 

used as seed to the GA algorithm, but this increases the 

computational time also. The selection of EM in the 

method by Wang et al 95 is a bad choice as EM has 

many limitations as mentioned above. The proposed 

methods by Wei et al and Fan et al 19,102 try to enhance 

the GA algorithm in another aspect by adding operators 

to escape from local optimum, but they also didn’t 

overcome the limitations of the simple GA algorithm. 

All discussed methods based on the GA algorithm re-

quire some parameters determined by the user as motif 

length. It can be said that the GA algorithm can be en-

hanced by using a new method that can identify OOPS, 

ZOOPS, and TCM models, escape from local opti-

mum, improve the fitness function, have good starting 

positions instead of random initialization, detect multi-

ple motifs with variable lengths, and have intelligent 

operators in addition to selection, crossover and muta-

tion operators. 

PSO is an exploration-exploitation trade off. Explo-

ration is the ability to get the global optimum by search 
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in various regions while the exploitation is the ability 

to locate the optimum by concentrating the search 

around a promising candidate solution 159. PSO is a 

simple concept, easily programmable 160, but it can 

easily fall in a local optimum and low convergence rate 
161. 

Based on PSO algorithm, Chang et al 144 obtained 

global optimum in protein sequences when the results 

were compared with the PROSITE database while 

Hardin et al’s algorithm 112 suffers from local solution. 

The methods in Lei et al 107,108 were tested on both 

simulated (PMP) and real biological data (E. coli); they 

are efficient and accurate in motif discovery, but they 

suffer from a long time delay due to full scan on all 

sequences to check the value of gbest and the repeat -

based method was used to automatically terminate the 

program. PMbPSO algorithm is tested on simulated 

and real biological datasets 162; the results indicate that 

PMbPSO algorithm performs better than MbGA and 

PbGA 163 and it is able to find longer size motifs with a 

minimum number of mismatches. LPBS algorithm 

searches for motifs based on reference set. LPBS was 

tested on Genbank (COI) and there were only two se-

lected species; BosTaurus (Cow-10 DNA sequences 

with lengths between 658 and 715 bp) and GallusGal-

lus (Chicken-9 DNA sequences with lengths between 

537 and 699 bp). The longest motifs which are able to 

discover LPBS algorithm are 294 and 261 bp in Bos-

Taurus and GallusGallus, respectively. The authors did 

not evaluate the LPBS method with other previous 

algorithms of motif discovery. GSA-PSO algorithm 

was tested on synthetic 39 and real data (TRANSFAC) 
164 and the authors reported that the GSA-PSO algo-

rithm performs better than AlignACE, MEME, and 

GALF 165. GSA-PSO algorithm was compared with old 

algorithms, although there are a lot of recent algo-

rithms for motif discovery. The presented methods 

based on the PSO algorithm have some limitations and 

the methods proposed by Reddy et al and Elewa et al 
4,113 used very simple fitness function and the program  

terminated manually by determining the numbers of 

iterations by the user. All the PSO-based methods start 

with random initialization except the method proposed 

by Abdullah et al 105; this leads to time consuming op-

erations and may not provide any correct solution.  

Moreover, PSO-based algorithms detect the motifs  

with OOPS model and ignore ZOOPS, and TCM mod-

els, and require motif length as the user input. 

Few methods based on ABC, ACO, and CS are the 

most recent techniques in motif discovery. 

ABC algorithm is a popular stochastic algorithm 

due to it is simple mechanism, and it requires few pa-

rameters which is easy to implement 166. Based on 

ABC algorithm, MO-ABC/DE algorithm is the same as 

the multiobjective ABC algorithm except for the gen-

eration of new candidate solutions; the DE operator 

was used to generate new candidates that combine ex-

isting ones according to a set of simple crossover-

mutation schemes. The consensus ABC algorithm, an-

other example of ABC technique, was tested on three 

different data sets and compared with a GA-based tech-

nique (MOGAMOD), a DE-based technique (DEPT) 
167, and a genetic operator-based ABC algorithm (MO-

ABC) 168. Consensus ABC algorithm achieves the high-

est similarity values of the motifs with different lengths; 

it used the neighbor selection strategy based on similar-

ity values between consensus sequences and this im-

proved the probability of the selection of a food source.  

ACO algorithm has some advantages as; it usually 

avoids fault convergence due to distributed computa-

tion and can be used in dynamic applications.  

From ACO algorithm, it can be concluded that there 

are some disadvantages: (1) It can easily trap local op- 
 

timum, (2) The consuming time is uncertain, i.e. it may 

take short/long time to converge, (3) The code is not 

obvious, (4) The ants must visit all points to get a good  
 

result that is unsuitable for motif discovery as it takes 

long time to check every substring in the input se-

quences and finally, (5) ACO requires many parame-

ters. Based on ACO, Machhi et al 117 reported that the 

total required computing time is reduced.  

Finally, there are several advantages for CS algo-

rithm: (1) It usually converges to the global optimality, 

(2) It combines local and global capabilities and local 

search takes a quarter of the total search time and the 

remaining time is for global search which makes CS 

algorithm more efficient on the global scale, (3) Levy 

flight is used in its global search instead of standard 

random walks, so the CS can explore the search space 

more efficiently, and (4) It is easy to implement, com-

pared with another metaheuristic search which essen-

tially depends on only a single parameter (pa). In a pre-

vious study, it was reported that the CSO and MACS 

can be effectively used to obtain global optimum motif 

patterns for all used input sequences and they are faster 

than other nature inspired algorithms 120. Recently, 

Grey Wolf Optimization for motif finding (GWOMF) 
169 was applied to get motifs in DNA input sequences.  

 
Conclusion 

 

The motif discovery algorithms are classified into 

four classes of enumerative, probability, nature in-

spired and combinatorial ones and each one has many 

subclasses. The comparison between them is listed in 

table 3. The enumerative technique is an exhaustive 

search with a simple concept, and it is the only tech-

nique that ensures to find all motifs (Except weak mo- 
 

tifs). However, it is very slow, and requires a lot of 

parameters; as a result, it becomes difficult to deal with 

either long motifs or big data. Moreover, the degenera-

tive positions are limited because of restricted repre-

sentation of motifs. 
 

Probability approach overcomes many weak points 

of the enumerative approach like speed, dealing with 

long motifs and big data, numbers of required parame- 
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ters and degenerated positions, and can find weak mo-

tifs. But the probability approach is a complex concept 

and can’t find all motifs. 

The third category, natured inspired approach, com-

bines the main features of the first two approaches. 

This approach is a simple concept and it is a global 

search but at the same time can deal with the big data 

and long motifs. It has a flexible representation of mo-

tifs and this lead to an unlimited number of degenerat-

ed positions. 

The last category is the combinatorial approach; its 

ability depends on the hybrid algorithms that combine 

to form the required algorithm. 

The common features of all algorithms are the flexi-

bility of objective function. 

The presented classification of motif discovery algo-

rithms is useful to get a general overview and to build a 

good motif discovery algorithm. 

From various suggested methods for motif discov-

ery problem, a good tool for motif discovery can be 

built. The tool must contain these features: (1) It should 

identify all models, i.e. OOPS, ZOOPS, TCM, (2) It 

should possess global search ability, (3) It should op-

timize the scoring function, (4) Parallel processing abi-

lity is a necessity, (5) It should have optimized data 

structures, (6) It should be able to detect long and short 

motifs, (7) It should have  the capacity of multiple mo-

tif discoveries at the same time, i.e. without removing 

the discovered motif to find the next, (8) And multiple 

motifs discovery with variable lengths, and (9) It needs 

to have an automatic system by decreasing the number 

of required parameters determined by the user. The 

next phase of this work is to develop a new motif dis-

covery algorithm that combines the main features of 

enumerative and probabilistic approaches and to use it 

as a seed to a nature-inspired algorithm by considering 

the factors mentioned above. 
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