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Abstract 
 

Background: Piwi-interacting RNAs (piRNAs) are small non-coding RNAs (ncRNAs), 
with a length of about 24-32 nucleotides, which have been discovered recently. These 
ncRNAs play an important role in germline development, transposon silencing, epige-
netic regulation, protecting the genome from invasive transposable elements, and the 
pathophysiology of diseases such as cancer. piRNA identification is challenging due to 
the lack of conserved piRNA sequences and structural elements.  
 

Methods: To detect piRNAs, an appropriate feature set, including 8 diverse feature 
groups to encode each RNA was applied. In addition, a Support Vector Machine 
(SVM) classifier was used with optimized parameters for RNA classification. According 
to the obtained results, the classification performance using the optimized feature 
subsets was much higher than the one in previously published studies.  
 

Results: Our results revealed 98% accuracy, Mathew’ correlation coefficient of 98% 
and 99% specificity in discriminating piRNAs from the other RNAs. Also, the obtained 
results show that the proposed method outperforms its competitors.  
 

Conclusion: In this paper, a prediction method was proposed to identify piRNA in 
human. Also, 48 heterogeneous features (sequence and structural features) were used 
to encode RNAs. To assess the performance of the method, a benchmark dataset con-
taining 515 piRNAs and 1206 types of other RNAs was constructed. Our method 
reached the accuracy of 99% on the benchmark dataset. Also, our analysis revealed 
that the structural features are the most contributing features in piRNA prediction. 
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Introduction 
 

In recent years, numerous confirmations from high-
throughput genomic programs show that albeit less 
than 2% of the mammalian genome translates proteins, 
a major segment can be transcribed into diverse mixed 
members of non-coding RNAs (ncRNAs) 1-3. The En-
cyclopedia of DNA Elements (ENCODE) and associ-
ated projects indicated that the majority of eukaryotic 
transcripts are ncRNAs 4. There are more than twenty 
thousand protein-coding genes in the human genome, 
which correspond to roughly two percent of human 
genome 5. The remaining regions in the human genome 
are non-coding RNAs, which were previously named 
"dark substance" or "junk DNA" 6. Recently, ncRNAs  
 

 
 
 

 
have attracted significant attentions with respect to 
their various biological roles, highlighting the biologi- 
cal importance of previously "overlooked" RNA reser-
voir 7. ncRNAs are complicated elements with different 
significant biological functions in the cell, including 
the control of chromosome dynamics, RNA splicing, 
RNA excision, translational inhibition and mRNA 
demolition 8. ncRNAs can be coarsely categorized into 
small ncRNAs (such as small nucleolar RNAs (sno-
RNAs), short-interfering RNAs (siRNAs), piwi-inter-
acting RNAs (piRNAs), microRNAs (miRNAs), and 
short hairpin RNAs (shRNAs)) or long ncRNAs (lnc-
RNAs),  based on the transcript size 9-12. The range of 
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ncRNAs is growing rapidly as new ncRNAs remain to 
be discovered by high-throughput sequencing methods. 
Nevertheless, a large number of ncRNAs presumably 
cannot be recognized 8,13. Therefore, the identification 
and explanation of ncRNAs is a considerable step for 
the explanation of different regulatory mechanisms in 
the cell. piRNAs are about 19 to 33 nucleotides long 
and most of their sequences fall in the range of 25-33 
nucleotides. These ncRNAs are similar to siRNA and 
miRNA which also have a strong preference for the 
5’uridine. Besides, piRNA molecules are located in 
clusters of length 20-100 kb. The density of piRNA 
clusters ranges from 40 to 4000 14-18. piRNAs are the 
most diverse and the most expressed small ncRNAs in 
animals 19,20. They are involved in epigenetic and post-
transcriptional regulation of retrotransposons 21. Lately, 
numerous researches have started to discover the hith-
erto unknown pathways of piRNA synthesis 22. Until 
now, a large number of piRNA sequences have been 
identified in human 23, mouse 16, rat 17, zebra fish 24, 
and fruit fly 25. Computational identification approach-
es can supply experimental approaches to identify nc-
RNAs quickly in novel genomes, specifically the nc-
RNAs that are transcribed under particular conditions 
in specific cell types. Many computational methods 
have been suggested for ncRNAs prediction, consisting 
of comparative 26-29 and non-comparative methods 30-37.  

In recent years, some studies were devoted to ana-
lyze computational identification of piRNAs 38-41. Bra-
yet et al 38 integrated machine learning method based 
on multiple kernels and a Support Vector Machine 
(SVM) classifier to identify the human and Drosophila 
piRNAs. Their method combined previously identified 
features and a new telomere/centromere neighborhood 
feature. The results from their SPG-GMKL method 
were better than the ones reported by Zhang et al 41 
(>0.8 in almost all measurements for both Human and 
Drosophila). Wang et al 39 performed transposon inter-
action and a SVM for piRNAs prediction. They used 
SVM to predict human, mouse and rat piRNAs, and 
they achieved 90.6% accuracy. They developed Piano 
program to predict piRNAs for the rice stem borer, 
Chilo suppressalis. They achieved an accuracy and 
sensitivity of 95%, and 96%, respectively. Betel et al 40 
trained a SVM classifier to distinguish between 5'-
RNA and all other uridin positions for mouse piRNA 
sequences. In this way, they could identify mouse 
piRNAs with a precision of 61-72 percent. But their 
method could not effectively predict those piRNA de-
rived from the 3'-UTR of mRNA which are produced 
by Ping Pong model. Also, Zhang et al 41 used Fisher 
separator algorithm by setting different cutoffs for 
piRNA identification in five model species including 
mice, humans, rats, fruit fly, and nematode. Their ap-
proach reached a precision of over 90% and a sensitivi-
ty of over 60%. But these studies are computationally 
intensive or they did not show a satisfactory prediction 
performance. In this study, to find a set of  effective 

descriptors for discriminating piRNAs from other nc-
RNAs, heterogeneous features of ncRNAs were ex-
tracted 42,43. Then, the SVM classifier with different 
parameters was performed to detect an optimized fea-
ture subset. The results show that different feature 
types have different discriminative power in piRNA 
prediction. Also, according to the results (our method 
achieved accuracy of 98% and specificity of 99%), the 
proposed method can be used effectively for piRNA 
detection.  
 

Materials and Methods 
 

Dataset 
In order to acquire the appropriate piRNA dataset, 

515 piRNAs from piRNABank 44 (http://pirnabank. 
ibab.ac.in/) as positive instances were extracted.   

To construct negative dataset, three groups of RNAs 
were used. The first one was composed of precursor 
miRNA sequences (http://www.mirbase.org/, version 
21), the second group consisted of non-piRNA se-
quences and they were derived from different data-
bases including 1200 sequences of various types: 
sequences of lncRNA, extracted from NCBI (http:// 
www.ncbi.nlm.nih.gov). 
precursor miRNAs, extracted from miRBase (http:// 
www.mirbase.org/, version 21); and 
human mRNA sequences ,downloaded from the NCBI 
database (http://www.ncbi.nlm.nih.gov). 
And the third group was composed of: 
sequences of snoRNA, collected from snoRNA-LBM-
E-db database (https://www-snorna.biotoul.fr); 
precursor miRNA sequences, extracted from miRBase 
(http://www.mirbase.org/, version 21); and 
sequences of tRNA, extracted from genomic tRNA 
database (http://gtrnadb.ucsc.edu/). As a result, 1206 
sequences of the third group were selected as negative 
instances. 
 

Extracted features  
Sequence-based features: Sequence-based features 

have showed a discriminatory power to predict biolog-
ical functions of macromolecules 45,46. With respect to 
the sequence features, the frequency of two neighbor-
ing bases (e.g., %AA), 15 sequence motifs 43 and the 
content of G and C (%G+C) formed the sequence-
based feature sets.  
 

Structural features  
Generally, structural attributes are significant for the 

identification of human piRNAs. Thus, sequence and 
structural features were incorporated to recognize hu-
man piRNAs. RNAfold program 47 was used with the 
default parameters to calculate structural features based 
on the RNA secondary structures. Since the Minimum 
Free Energy (MFE) is an index that assesses the stabil-
ity of the secondary structure of non-coding RNAs, 
several structural features, including MFE, as the struc-
tural feature sets were selected. Table 1 shows the total 
48 features. 
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Support vector machine (SVM)  
SVM is an efficient machine learning technique, re-

sponding to classification problems in bioinformatics 
and computational biology 48. The SVM is able to con-
vert low-dimensional non-linear matters into high-di-
mensional linear problems, resolving non-linear classi-
fication issues by reducing the linear classification 
problems 49. In this study, two models were trained and 
tested separately using one- and two-class SVM for 
human dataset. In addition, for optimizing the one-
class SVM model, the radial basis function (RBF) ker-
nel parameter nu (γ) were adjusted by the grid search 
strategy in MATLAB. Figure 1 illustrates the pipeline 
for piRNA identification. 
 

Performance evaluation  
A 10-fold cross validation procedure was used to 

assess the performance of the proposed model using 
four measures: sensitivity (SE), specificity (SPC), ac-
curacy (ACC), and Matthews’s correlation coefficient 
(MCC). The formulas of these four measures are as 
follows: 
 

SE=TP/(TP+FN) 
SPC=TN/(TN+FP) 
ACC=(TP+TN)/(TN+FP+TP+FN)  

					MCC ൌ
ሺTP ൈ TN െ FP ൈ FNሻ

ඥሺTP  FPሻሺTN  FNሻሺTP  FNሻሺTN  FPሻ
 

 

TP and TN are the number of piRNAs and non-
piRNAs, respectively, that predicted correctly. Also, 
FN and FP are the number of piRNAs and non-piRNAs 
that predicted wrongly 38.  
 

Results 
 

Kernel function selection 
One of the most important parameters in SVM clas-

sifier is the kernel function 50. In this study, four differ-
ent kernel functions were used to obtain the best SVM 
model for piRNA prediction: Linear, Polynomial, Ra-
dial Basis Function (RBF) and Sigmoid. As figure 2 
shows, the SVM with RBF kernel performed better 
than the others. 
 

Optimizing the nu (γ) parameter  
Selecting the appropriate value for the nu (γ) param-

eter is a critical step in SVM model with RBF kernel 
function51. To optimize this parameter, different values 
of γ were tried (Figure 3). According to the obtained 
results, the best values for γ were 0.06 and 0.08 in the 
training dataset. 

Table 1.  The final 48 features used for building our model 
 

No. of features Feature Description 
1 ANAA Motif 
2 CNTG Motif 
3 CNTA Motif 
4 CTNT Motif 
5 CNTC Motif 
6 CAC Motif 
7 CNTNT Motif 
8 GNCA Motif 
9 ATA Motif 
10 ANTT Motif 
11 TGNNT Motif 
12 GNAC Motif 
13 CTT Motif 
14 ANNCT Motif 
15 AGNG Motif 
16 %G+C GC content 
17-32 %XY Frequency of dinucleotide XY (A,T,C,G) 
33 MFEI1 Index 1 based on the minimum free energy 
34 MFEI2 Index 2 based on the minimum free energy 
35 MFEI3 Index 3 based on the minimum free energy 
36 MFEI4 Index 4 based on the minimum free energy 
37 dG Normalized minimum free energy 
38 dp Normalized base-pairing propensity 
39 NEFE Normalized ensemble free energy 
40 Freq Frequency of the MFE structure 
41 Diff Structural diversity 
42 |A-U|/L Normalized base pair counts 
43 |G-C|/L Normalized base pair counts 
44 |G-U|/L Normalized base pair counts 
45 ABS Average base pairs per stem 
46 %(A-U)/s Based on the average base pairs per stem 
47 %(G-U)/s Based on the average base pairs per stem 
48 %(G-C)/s Based on the average base pairs per stem 
 

Figure 1. Flowchart describing the pipeline for piRNA identification. 

Figure 2. Different performance measures when different subsets of 
features were used. 
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Assessing the prediction performance 
The 48 features were divided into eight overlapping 

groups and in each group the optimized SVM was run.  
These eight groups were 15 motif features (Features 1- 
15), 10 features corresponding to the sequence (Fea-
tures 16-25), 17 features corresponding to the sequence 
(Features 16-32), 9 structural features (Features 33-41), 
7 features corresponding to the base pair (Features 42-
48), 22 features corresponding to the motif and base 
pair (Features 1-15 and 42-48), 16 features correspond-
ing to structure and base pair (Features 34-48) and fi-
nally, 31 features corresponding to structure, base pair, 
and motif (Features 1-15, and 33-48). Table 2 shows 
the performance of the SVM using different subset of 
features. As table 2 shows, the best performances were 
achieved for the fourth and fifth groups. Figure 4 pro-
vides a better illustration of the performance when dif-
ferent subsets of features were used.  

Thus, such structural and base pair features (Table 
2) that were previously used to classify real and pseudo 
miRNAs 42 propose the similarity of these structure-
base pair features for all types of small ncRNAs 39.  

 
Discussion 

 

In this paper, SVM was exploited to predict piRNA 
in human. After examining various kernel functions, 
RBF kernel function was used for the SVM. Choosing 

appropriate descriptors are of considerable importance 
to encode RNAs for building an accurate model. In this 
study, 48 various descriptors were used to build feature 
vectors. These features can roughly be categorized into 
eight overlapping groups (Table 2).  

To assess the contribution of different feature types 
in piRNA prediction, performance of the SVM model 
was computed using different feature subsets. Our re-
sults showed that structural features (Features 33-41) 
and 7 features corresponding to the base pair (Features 
42-48) are the most contributing features. These fea-
tures had near perfect performance (accuracy of 98% 
and sensitivity of 99%). 

Also, an attempt was made to compare the proposed 
method with the three recently published methods of  
Zhang et al 41, Lakshmi et al 43 and Brayet et al 38. 
Zhang et al 41 used k-mer schema to identify piRNA 
sequence in five model species. Liu et al 43 developed a 
method for piRNA identification based on motif dis-
covery using SVM classifier, named Pibomd. Brayet  
et al 38 proposed an algorithm, named piRPred, to iden-
tify piRNAs. They used a multiple kernel fusion and an 
SVM-based approach which allow using heterogene-
ous features. To have a fair comparison, these methods 
were run on our dataset. As table 3 shows, our method 
outperformed the other methods in three different per-
formance measures.  

The biological significance and the functions of 
piRNA molecules are currently the subject of intensive 
study and, numerous researches have started to uncover 
the hitherto unknown biological mechanisms of piRNA 
22,52,53. Therefore, computational identification of pi-
RNA has been at the forefront of research for under-
standing the mechanisms that maintain germline integ-

Table 2. Performance of the SVM using different subset of features 
 

Description of groups with different features Features’ subset ACC MCC SPC 

15 motif features (Features 1-15) S1 0.85 0.73 0.81 

10 features corresponding to the sequence (Features 16-25) S2 0.90 0.78 0.91 

17 features corresponding to the sequence (Features 16-32) S3 0.91 0.81 0.88 

9 structural features (Features 33-41) S4 0.98 0.98 0.99 

7 features corresponding to the base pair (Features 42-48) S5 0.98 0.98 0.99 

22 features corresponding to the motif and base pair (Features 1-15 and 42-48) S6 0.78 0.50 0.92 

16 features corresponding to structure and base pair (Features 34-48) S7 0.97 0.95 0.97 

31 features corresponding to structure, base pair, and motif (Features 1-15, and 33-48) S8 0.71 0.25 0.96 

 

Figure 3. Accuracy of the SVM model with different kernel functions. Figure 4. Different values of the parameter γ in SVM model.

Table 3. Comparison with other methods 
 

Method SPC (%) SE (%) ACC (%) 

Zhang et al 41 98 52 75 

Liu et al 43 89 91 90 

Brayet et al 38 82 30 58 

Our method   99 99 98 
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rity. According to the results, it can be stated that fea-
ture subsets 4 and 5 are the most contributing features 
in piRNAs prediction. So, secondary structure features 
and base pairing information, which can be computed 
by appropriate tools, can effectively help the biologists 
to design and discriminate piRNAs from other RNAs 
47,54. 

 
Conclusion 

 

In this paper, a prediction method was proposed to 
identify piRNA in human. Also, 48 heterogeneous fea-
tures (sequence and structural features) were used to 
encode RNAs. To assess the performance of the meth-
od, a benchmark dataset containing 515 piRNAs and 
1206 types of other RNAs was constructed. Our meth-
od reached the accuracy of 99% on the benchmark da-
taset. Also, our analysis revealed that the structural 
features are the most contributing features in piRNA 
prediction. Finally, three recently published computa-
tional studies were used in piRNA detection. The ob-
tained results show that the proposed method outper-
forms its competitors.  
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