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Abstract 
Severe hepatic failure accounts for many deaths and raises medical costs each 
year worldwide. Currently, liver transplantation is the most common 
therapeutic option for patients with end-stage chronic liver disease. Due to 
decrease in the number of organ donors, many in need of transplantation 
continue to remain on the waiting list. Hepatic Tissue Engineering is a step 
toward alleviating the need for organ donors. Regenerative medicine and 
tissue engineering require two complementary key ingredients as follows: 1) 
biologically compatible scaffolds that can be readily adopted by the body 
system without harm, and 2) suitable cells including various stem cells or 
primary cells that effectively replace the damaged tissues without adverse 
consequences. Yet many challenges must be overcome such as scaffold choice, 
cell source and immunological barriers. Today, hepatogenic differentiation of 
stem cells has created trust and promise for use of these cells in hepatic tissue 
engineering and liver replacement. However, using suitable scaffolds is an 
important key to achieving the necessary functions required for hepatic 
replacement. In recent years, different scaffolds have been used for liver tissue 
engineering. In this review, we have presented different concepts in using cell 
/scaffold constructs to guide hepatic tissue engineering. 
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Introduction 
Every year, the number of patients needing 

a hepatic transplant increases. Many of those 
in need of a transplant have suffered from full 
hepatic failure caused by disease, genetic 
complications or adverse drug reactions. Cur-
rently, there are many people waiting to have 
a liver transplant. However, there are not 
enough organ donors.  

At the moment, there are about 700 patients 
waiting to have a liver transplant in Iran, but 
the number of liver donors is less than 200. At 
present, liver transplantation is the only 
therapeutic option for patients with end-stage 
chronic liver disease and severe liver failure.  

However, the efficacy of liver transplanta- 
 

 
 
 
 

tion is limited by the shortage of available 
organ donors, risk of rejection, infections, and 
other complications caused by the lifelong 
immunosuppression (1). 

Tissue engineering proves to be a tem-
porary treatment for patients suffering from 
hepatic failure (2). For successful tissue regen-
eration, the cells constituting tissues to be re-
generated are necessary. Considering the pro-
liferation activity and differentiation potential 
of cells, stem cells are practically promising. 
Self-renewal is a unique property of stem 
cells that gives multi-potential differentiation 
ability to them.  

Today, there are different studies showing 
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hepatogenic differentiation capacity of the 
stem cells (3-5). However, the challenge re-
mains to develop robust protocols, to generate 
functional hepatocytes from stem cells suit-
able for the transplantation.  

A complementary key ingredient in regen-
erative medicine and tissue engineering is to 
make a use of biologically compatible scaf-
folds that can be readily adopted by the body 
system without harm (6). Advances in polymer 
chemistry have facilitated the engineering of 
synthetic matrices that can be precisely ma-
nipulated with regard to physical and mechan-
ical characteristics. This review has presented 
some directions that the field of liver tissue 
engineering is heading. 
 

Hepatic biology 
The liver is a highly metabolic, complex 

array of vasculature, endothelial cells and 
parenchymal cells that performs many func-
tions in the body. The bulk of the liver is 
primarily composed of parenchymal cells 
such as hepatocytes, hepatocyte precursor 
cells (oval cells or Ito cells), stellate cells, 
kuppfer cells, epithelial cells, sinusoidal epi-
thelial cells, biliary epithelial cells and fibro-
blasts (7). Hepatocytes constitute approximate-
ly 70% of the cellular population of the liver 
and perform major metabolic functions such 
as plasma protein synthesis and transport, 
xenobiotic metabolism, glucose homeostasis, 
urea synthesis, and ketogenesis (8). Thus, 
hepatocytes used for tissue engineering pur-
poses must be able to perform these basic 
functions.  
 

Cell source  
In the field of hepatic tissue engineering, 

choosing cell type and cell source is important 
because it is necessary to choose cells that 
demonstrate the particular phenotype of 
interest. The various cell types that have been 
studied include stem cells, hematopoietic 
cells, oval progenitor cell and mature hepato-
cytes (9-11). Deciding which cell type to use is 
dictated by the need and desire for the cells to 
perform in a predicted manner, exhibiting 
certain characteristics. 

Hepatic progenitor cells found within the 
liver have already begun to differentiate, but 
still have several options before becoming 
destined to a specific cell line. These cells 
will not necessary become mature hepato-
cytes, but may in fact differentiate into other 
functional cells of the liver, such as bile duct 
cells (12,13). Hepatic progenitor cells are often 
distinguished as primary or small hepatocytes. 
Mature hepatocytes can be obtained either 
from the perfusion of an intact or resectioned 
liver or from an established cell line.  

Currently, primary mature hepatocytes, the 
most common cellular component in current 
liver tissue engineering, do not replicate suffi-
ciently in vitro to meet the requirements of 
clinical use and do not maintain their differen-
tiated properties in vitro (14). So the search for 
novel cell resources has prompted investiga-
tions into generating hepatocytes from stem 
cells of extra hepatic origin, based on their 
availability and unrestricted potential to 
propagate and differentiate (15-17). 

The stem cells found in sources such as 
bone marrow, are the most flexible cells in 
terms of their undetermined pathway and they 
express a remarkable ability to differentiate 
into desired cell types (10,12,13). The interest in 
adult stem cells has in particular been trig-
gered by the numerous ethical dilemmas sur-
rounding the use of embryonic stem cells in 
pre-clinical and clinical research (18). Among 
the adult stem cells, human Bone Marrow 
derived Mesenchymal Stem Cells (hBMSCs) 
have great potential for liver tissue engineer-
ing because autologous BMSCs can be har-
vested, expanded extensively ex vivo, and dif-
ferentiated into a hepatic phenotype for trans-
plantation back into patient (18,19). 

Following Bone Marrow (BM) transplanta-
tion, oval cells are derived from the BM 
donor (20). Differentiation of hBMSCs into 
hepatocytes-like cells in standard monolayer 
or two dimensional (2D) cultures is now well 
established (21-24).  
 

From stem cells to hepatocytes 
Until recently, it was believed that hepato-

cytes could only be derived from cells of 
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endodermal origin and their progenitors. 
However, recent studies suggest that non-
endodermal cells may also form hepatocytes 
in vivo and in vitro. At present, it is believed 
that stem cells divide asymmetrically to pro-
duce a new stem cell and a progenitor cell that 
subsequently undergoes differentiation and 
maturation to form functional tissues (25).  

 It seems the microenvironment or niche of 
the stem cell is likely to be one of the factors 
dictating the type of mature functional cells. 
The original idea of a stem cell ‘‘niche’’ 
evolved from the concept that stem cells 
inhabit tissues within an ‘‘inductive microen-
vironment’’ that directs their self-renewal, 
differentiation, and cell fate in both normal 
physiology and disease (26-28). 

Many developmental regulatory signaling 
molecules including Wnts, Bone Morpho-
genic Proteins (BMP), Fibroblast Growth 
Factors (FGFs), Notch and others may play a 
role (26,29,30). In addition to stem cells, the 
niche microenvironment comprises on stem 
niche cells (e.g. stromal cells, periductular 
fibroblasts and stellate cells), parasympathetic 
nerve endings and specialized extracellular 
matrix (26, 31-33). 

The coordinated signaling between com-
ponent cells and scaffold, (in) direct cell-cell 
contacts, and integration of stem cell autono-
mous properties represent an interactive and 
dynamic system, organized to facilitate cell 
fate decisions in a proper spatiotemporal man-
ner (26,30,31).  

The microenvironment of developing 
hepatocytes is a continuously changing pro-
cess of successively occurring biological 
events (34). Each step of cell growth and dif-
ferentiation is tightly regulated by intra extra-
cellular communication as well as cell auto-
nomous mechanisms (35). Activin, Fibroblastic 
Growth Factor (FGF), Bone Morphogenesis 
Protein (BMP), Hepatocyte Growth Factor 
(HGF) and Oncostatin M (OSM) are the most 
essential extracellular signals. HGF is known 
to mediate growth, proliferation, angiogenesis 
and cell motility. Growth and differentiation 
of hepatocytes are known to be controlled by 

the Epidermal Growth Factor (EGF), FGF, 
Interleukin-6 (IL-6), Transforming Growth 
Factor (TGF-a), and Insulin-like Growth 
Factors (IGF). Corticosteroids, amino acids, 
OSM, nicotanimide, and Dimethyl sulfoxide 
(DMSO) stimulate function and differenti-
ation (25, 31, 34, 35-37). 

 At the intracellular level, the liver-enriched 
transcription factors including Hepatocyte 
Nuclear Factor (HNF) 3α,β, HNF4α, HNF1α, 
β, and  HNF6 act consecutively in essence in 
a cross-regulatory manner at specific develop-
ment stages to regulate liver-specific gene ex-
pression. Interactions between these various 
compartments accomplish homeostatic regu-
lation of stem/ progenitor cell functioning  
in vivo (25,30,31). Consequently, identification 
and simulation of these in vivo signaling pat-
terns might comprise an approach to contrib-
ute to fate reprogramming of stem/ progenitor 
cells in vitro.  
 

Cell-matrix constructs 
Generating cell/ matrix constructs to guide 

tissue regeneration involves isolating appro-
priate cell populations and transferring these 
to polymer scaffolds for in vivo implantation. 
The scaffold functions to (a) provide struc-
tural integrity and to define a potential space 
for the engineered tissue, (b) guide restruc-
turing that occurs through proliferation of 
cells donor and ingrowths of host tissue, (c) 
maintain distances between cells that permit 
diffusion of gas and nutrients and possibly the 
ingrowths of vasculature from the host bed 
and (d) to transmit tissue-specific mechanical 
forces to cue the behavior of cells within it. A 
biodegradable polymer will degrade and grad-
ually be replaced by regenerated tissue, min-
imizing the substrate for an inflammatory 
response (6). 

Employing cell/ polymer matrices for tissue 
regeneration is an approach that permits 
experimental manipulation at three levels to 
achieve optimal constructs for individual 
tissues, i.e. the cells, the polymer scaffolds 
and the methods used for construct assembly.  
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Polymer scaffolds 
There are multiple approaches to engineer-

ing a viable liver, with variables such as cell 
type, structure, and material. The scaffold is a 
common feature of many liver tissue engin-
eering projects. Its benefits include providing 
a place for attachment, increased surface area, 
support for a larger cell mass, and the capabil-
ity of shaping specific structures. Importantly 
the scaffold must be biocompatible and bio-
degradable allowing the organ to grow "in 
lieu" of the scaffold and support itself over 
time. Other aspects that have been studied 
include surface pattern and structure for 
optimal attachment, porosity for nutrient and 
gas exchange, surface factors for increased 
and supported growth and function, and sur-
face coating of the scaffold (1,6,38). Scaffolds 
provide a site of attachment for hepatocytes 
and are a delivery vehicle for transplantation.  

In addition to the basic structural vehicle, 
several other conditions must be met before a 
scaffold may be used in tissue engineering ap-
plications. The scaffold must be biodegrade-
able and biocompatible in that they do not 
leach harmful materials as they degrade. Pore 
size must be controllable to allow for pre-
vascularization or angiogenesis occurring. 
Also, the scaffold should have sufficient sur-
face area for cells to attach and be able to 
provide enough room for the cell colony to 
expand and proliferate (6,38). 

Polymer scaffolds can be constructed from 
natural or synthetic biomaterials. The hepato-
genic differentiation of stem cells in natural 
matrix such as collagen, fibronectin, gelatin 
and matrigel has been the subject of different 
reports (39-42). Natural polymers are suitable 
for cell interaction, however, scaffolds fabri-
cated purely from these molecules exhibit 
poor mechanical strength and are not easy to 
handle. Large batch to batch variations upon 
isolation from biological tissues as well as 
restricted versatility in designing devices with 
specific biomechanical properties are other 
limitations assigned to the natural scaffolds 
(43). 

Advances in polymer chemistry have fa- 
 

cilitated the engineering of synthetic matrices 
that can be precisely manipulated with regard 
to physical and mechanical characteristics. 
Variables such as polymer porosity and deg-
radation rate can be systematically regulated 
by altering either the materials employed or 
polymer-processing methods. A variety of 
synthetic polymers exist, including polyesters, 
synthetic polypeptides and hydrogels. The 
most widely used polymers in tissue engineer-
ing have been aliphatic polyesters i.e. Poly-
glycolic Acid (PGA), Polylactic Acid (PLA), 
Poly Lactic-co-glycolic Acid (PLGA) and 
Polycaprolactone (PCL) (44). 

These synthetic polymers have advantages 
in pro-accessibility, good mechanical prop-
erties and manipulating degradation rate, but 
they lack cell recognition signals and hinder 
successful cell seeding because of their hydro-
phobic trait. Therefore, to encourage cell in-
growths for better integration between cells 
and the scaffold, the biologically inert syn-
thetic materials need effective hybridization 
with bioactive molecules (45,46). 

The scaffolds should mimic the structure 
and biological function of native Extracellular 
Matrix (ECM). A well known feature of 
native ECM structures is the nanoscaled di-
mensions of their physical structure (6,47). In 
recent years, with respect to nanofibers for 
tissue engineering purposes, a wide variety of 
nanofibrous scaffolds have been produced  
(48-52).  

Design of nanofibers is an important con-
cern in the effective applications of these 
nanostructured materials. Different techniques 
have been used for formation of nanofibrous 
materials (53). There is increasing interest to-
wards employing electrospinning for scaffold 
fabrication because the mechanical, biologic-
al, and kinetic properties of the scaffold are 
easily manipulated by altering the polymer 
solution composition and processing param-
eters. It has been shown that electrospun 3D 
nanofibrous structures share morphological 
similarities to ECM, and are capable of 
promoting favorable biological responses 
from seeded cells (54,55). 
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Kazemnejad et al (2007) designed an 
artificial nanofibrous matrix that can mimic 
ECM, to support hepatic tissue engineering. 
They introduced a scaffold composed of Poly 
(ε-caprolactone), collagen and polyether sul-
fone was fabricated by electrospinning tech-
nique. It has been reported that the engineered 
nanofibrous scaffold was a conductive matrix 
which supports and enhances stem cells 
development into functional hepatocyte-like 
cells (56). 
 

Hepatic tissue engineering using scaffolds  
Hepatocytes are known to better maintain 

their differentiated functions in three dimen-
sional (3D) multicellular aggregates or spher-
oids than in monolayer culture (57,58). Exten-
sive cell-cell contact between hepatocytes 
grown in aggregates promotes the formation 
of gap junctions, tight junctions, and bile 
canaliculi that are important for stabilizing the 
hepatocyte phenotype (59,60). Cells in spher-
oids also have a morphology and ultra struc-
ture similar to those found in a native liver 
lobule (61-63).  

It has also been demonstrated that an in-
creased level of Ecadherin mediated cell ad-
hesion between cultured hepatocytes, induces 
higher levels of liver-specific functions (64). 
Many studies have also highlighted the bene-
fit of matrigel, a basement membrane extract 
from the Engelbreth-Holm-Swarm mouse sar-
coma that serves as a complex ECM, in 
prolonging the maintenance of adult hepato-
cyte functions and in promoting the matur-
ation of hepatic progenitor cells.  

Differentiation of stem cells and hepatic 
progenitor cells is the most complete on 3D 
matrigel (40,65,66), and liver-specific functions 
of adult hepatocytes are better maintained 
when they are plated on a combination of 
ECM molecules (67,68). To date, various coat-
ings like fibronectin, collagen, and matrigel 
have been used to support the differentiation 
of stem cells to hepatocytes (40,69-71). There-
fore, in vitro selective growth and differentia-
tion of MSCs in 3D biocompatible polymer 
scaffolds could be very efficient to develop a 
liver tissue having a clinically significant 
 

mass and maintain liver-specific functions.  
However, the use of such natural scaffolds 

has been associated with some limitations. 
The problem with the control of pore size and 
porosity, large batch to batch variations upon 
isolation from biological tissues and poor 
biomechanical strength are the major 
concerns. As such artificial microenviron-
ments including nanofibers designed to 
produce differentiated cells from stem cells 
and progenitor cells need to support both 
adult progenitor cell proliferation and dif-
ferentiation (72-79). 

Although there is a significant interest in 
using nanofibers in tissue engineering from 
stem cells, reports on the transdifferentiation 
of stem cells into the hepatic lineage in a 
nanofibrous configuration is scanty. More 
recently, differentiation of Human cord 
blood-derived unrestricted somatic stem cells 
into hepatocyte-like cells on poly (epsilon-
Caprolactone) nanofiber scaffolds has been 
reported (80).  

Thereafter, Kazemnejad et al (2009) dif-
ferentiated hBMSCs into hepatocyte-like cells 
on an artificial nanofibrous matrix composed 
of PCL, collagen and PES. Based on the ex-
perimental evidences the expression of liver 
specific genes such as albumin, alpha feto-
protein, cytochrome P450 3A4, cytokeratin-
18 and cytokeratin-19 detected by RT-PCR, 
showed progressive expression during 3 
weeks of differentiation on 3D scaffold. 
Moreover, the hepatocyte like cells displayed 
several characteristics of metabolic functions 
as judged by production of albumin, urea, 
transferrin, Serum Glutamic Pyruvic Trans-
aminase (SGPT) and Serum Oxaloacetate 
Amino Transferase (SGOT) (81).  

In an another study, Kazemnejad et al 
demonstrated that the PCL/ collagen/ PES 
nanofibers not only allow the hBMSCs to 
differentiate into hepatocyte, but also enhance 
MSCs development into functional hepato-
cyte-like cells when compared to the conven-
tional culture system. They reported that the 
levels of the mentioned markers (except 
SGOT) in differentiated cells on scaffold were 
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significantly greater than that in 2D culture 
system (p<0.05). So it seems that the high 
porous PCL/ collagen/ PES architecture pro-
vides an ECM-like nano-environment that is 
conducive to normal hepatic differentiation 
(82).  

Detailed knowledge about the part played 
by the scaffold architecture for enhancing the 
stem cell differentiation especially into 
hepatocytes needs further studies. It is as-
sumed that the presence of biological signals 
from the biomimetic nanofibers provides a 
nano-environment resembling a 3D natural 
ECM which would enhance the biological 
activity of growth factors and cytokines for 
inducing differentiation.  
 

In vivo studies of hepatic tissue engineering 
Hepatic tissue engineering is focused on 

creating a whole, implantable and functional 
liver. Many approaches have been used such 
as direct cellular injection onto present vas-
cular beds, micro-carrier attachment and scaf-
fold implants seeded with cells. One obstacle 
that must be overcome in complex, vascular 
organs such as the liver is the feeding of 
nutrients and removing waste from the cells in 
the interior. Two approaches to solve this 
problem are to allow the process of angio-
genesis to occur into the cell aggregate or pre-
establish a vasculature bed and seed the cells 
around the network.  

The success of tissue engineering over 
other organs such as bone, cartilage and skin 
has been achieved, because they are not as 
highly metabolic and do not require an exten-
sive vasculature. In addition, these vascular-
ized organs do not need to achieve the large 
dimensions that many vital organs do. Direct 
cellular injection into a vascularized area of 
the body has been the focus for the cells to 
sustain the metabolic activity of the organ. 
Cells have been injected with or without a 
hydrogel into various vascular beds, cavities, 
and organs within the body (83). Several areas 
that have been injected with cells are the 
spleen, pancreas and peritoneal cavities. 

In the case of transplantation into the liver 
through the portal vein, the number of trans-

planted cells is limited because intraportal in-
jection of too many cells might cause lethal 
portal embolism and liver necrosis. The 
spleen is considered to be a suitable site for 
implantation because hepatocytes can be sta-
bly viable and maintain their functions (84, 85). 
The only disadvantage is that the number of 
transplanted cells might be limited. The peri-
toneal cavity seems to be the most likely can-
didate site for implantation, because invasive 
treatments are not necessary and a large 
number of cells can be transplanted. However, 
the disadvantage is the difficulty in mainten-
ance of hepatocyte viability in the peritoneal 
cavity. 

Cells have also been implanted in 
prevascularized polymer sponges to improve 
cell survival in vivo. Although success has 
been achieved, the cells are limited by the size 
and the aggregate they can achieve due to lack 
of vasculature in the construct (1). Three di-
mensional printing of biodegradable polymers 
allows the ability to create complex shapes 
and exact replicas of existing structures from 
Computed Tomography (CT) scans. Isolated 
hepatocytes on PGA meshes were first trans-
planted into the mesentery and omentum of 
syngeneic rats. Cells in these constructs ex-
pressed liver specific functions prior to trans-
plantation (86) and survived for extended 
periods of time following transplantation, or-
ganizing into liver-like structures (87). 
However, a significant loss of cells was noted 
post-transplant. This was felt to be due to (a) 
a failure to meet the oxygen/nutrient require-
ments of the cell mass and (b) insufficient 
stimulation of the transplanted cells or to both 
of these factors.  

To augment the supply of these essentials, 
Stein et al performed prevascularization on a 
polymer scaffold composed of polyvinyl alco-
hol and transplanted into recipient animals, 
i.e. partial hepatectomy and a portal-caval 
shunt (88). These procedures resulted in an 
increased delivery of hepatotrophic factors to 
the systemic circulation and diminished their 
clearance by the native liver and led to 
significant improvement in cell survival.  
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Higashiyama and his colleague transplant-
ed rat hepatocytes seeded in porous Hydroxy-
apatite (HA) disks into the peritoneal cavity 
of Nagase Analbuminemia rats (NARs) (89). 
Angiogenesis was observed inside the pores 
in HA disks, and hepatocyte viability was 
shown to be maintained for at least 3 weeks, 
as evidenced by the increase in the serum 
albumin level. Moreover, these researchers 
have been attempting to maintain the viability 
and functions of hepatocytes by co-culturing 
them with various cells, such as Nonparen-
chymal liver cells (NPLCs) (90, 91). They then, 
co-cultured hepatocytes with BMSCs in HA 
disks and transplanted the disks into NARs 
and liver-damaged mice. The increase of 
serum albumin level in the liver-damaged 
mice was reported by the transplantation of 
hepatocytes and BMSCs. The serum level of 
IL-6 in the liver-damaged mice was also 
increased by the cotransplantation of BMSCs 
and hepatocytes (92).  

Polymer implantation, surgical stimulation 
and cell transplantation technologies have 
been extended to large animal models. Dal-
mation dogs have a genetic deficiency in uric 
acid uptake in the liver which results in 
elevated serum and urine uric acid levels. 
Implantation of hepatocytes on PGA sheets 
resulted in partial correction of the enzyme 
deficiency for up to six weeks (93). Successful 
hepatocyte engraftment has also been achiev-
ed in swine (94). 

These evidences clearly show that more  
in vivo work needs to be accomplished before 
a viable organ will be available for transplant-
tation. 

 
Conclusion 

With the recent advances in the field of 
hepatic tissue engineering, there is much 
promise of working towards an implantable 
whole organ. Many new polymers are being 
developed that respond to thermal changes, 
release imbedded or attached growth factors 
and other mediators, and have degradation 
characteristics and properties that is ideal for 
growth, viability, and attachment. An optimal 

polymer is being developed based on desired 
characteristics. Recently, electrospun nano-
fibrous scaffolds showed great promise and 
potential for liver tissue engineering.  

 Many other factors are being studied that 
contribute to cell growth and differentiation. 
However, further studies need to be per-
formed for the development of a bioartificial 
liver system. 

 With the growth of the tissue-engineering 
field, many ethical considerations must be 
recognized. Determining which cell source is 
safest for patients, which cells should be used, 
whether they are embryonic stem cells, oval 
progenitors or adult stem cells, and how the 
cells should be stored and cultured are im-
portant issues to take into consideration. 

Hepatic tissue engineering is an ever ex-
panding field encompassing and including 
new areas of study. Because of its multidis-
ciplinary nature, it is important for clinicians, 
basic scientists and engineers to collaborate 
and explore all areas of possibilities. With 
each new advance in the field of tissue engin-
eering, a step towards an implantable liver is 
realized. Even though the goal of creating an 
entire implantable organ has not yet been 
reached, the progress towards this goal is 
proving to be fruitful to all those involved, 
mainly the patients who will benefit from the 
advancements being made. 
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