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Abstract 
 

Background: Placenta-specific 1 (PLAC1), as a new Cancer/Testis Antigen (CTA), is 
frequently expressed in a variety of cancers and localized to cytoplasm and plasma 
membrane. Surface expression of cancer target antigens is of great importance that 
enables antibody-mediated cancer immunotherapy. The aim of the current study 
was to express the intact human PLAC1 protein on plasma membrane of a eukaryotic 
cell as a model for future anti-PLAC1-based cancer immunotherapy.  
Methods: In the first approach, entire human PLAC1 gene including its own Signal 
Peptide (SP) was cloned into pIRES2-EGFP and LeGO-iG2 vectors and expressed in 
CHO-K1 cells. In the second approach, cytosolic and Signal-Anchor (SA) sequence of 
Transferrin Receptor Protein 1 (TFR1) were fused to extracellular portion of PLAC1 and 
expressed as above. Expression of PLAC1 was then assessed using Reverse Transcription 
Polymerase Chain Reaction (RT-PCR), Western Blot (WB), Immunocytochemistry 
(ICC), Immunofluorescence (IF) and Flow Cytometry (FC).  
Results: The first approach resulted in the expression of PLAC1 in submembranous but 
not in the surface of transfected CHO-K1 cells. Using the chimeric human PLAC1 con-
struct, the same intracellular expression pattern was observed.  
Conclusion: These results indicated that there are some yet unknown PLAC1 localiza-
tion signals employed by cancer cells for surface expression of PLAC1. 
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Introduction 
 

Surgery and chemotherapy are among well-estab-

lished therapeutic modalities for most of the patients 

with cancer and considerably have increased survival 

rate of cancer patients. However, all these therapeutic 

approaches are associated with various undesirable side 

effects on normal tissues. In this regard, the exploiting 

of the immune system to specifically eradicate cancer 

cells remains an interesting option. Using tumor anti-

gens is one of the most exciting approaches to over-

come cancer by anti-tumor T cell responses. Tumor  
 

 

 

 

 

 
antigens may originate from mutated, overexpressed or 

aberrantly expressed normal proteins 1,2. Tumor-As-

sociated Antigens (TAAs) 3, tumor-specific antigens 

(TSAs) 1,3, and Cancer/Testis Antigens (CTAs) 4,5 are 

the main classes of tumor antigens. The lack of bonafi-

de TSAs, however, is a main obstacle in cancer immu-

no therapy. CTAs are expressed in gametes and tro-

pholasts and also in many types of cancers 2. Notably, 

CTAs have captured the focus of many researchers 

during the past few years with encouraging results 5,6. 
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In the scarcity of tumor-specific neoantigens, the over-

expression of CTAs by cancer cells to trigger an anti-

tumor immune response remains an encouraging case 

for the researchers 7. 

Placenta-specific 1 (PLAC1) is a new member of 

cancer testis antigens which was first introduced by 

Cocchia et al in 2000 8. Human PLAC1 maps 65 kb 

telomeric to hypoxanthine-guanine phosphoribosyl 

transferase (HGPRT) at Xq26 and encodes a small pro-

tein consisting of 212 amino acids 8. PLAC1 protein is 

mainly expressed in placenta 9-12, while it is frequently 

activated in a variety of cancers including cancers of 

breast 13-16, lung 13-15,17,18, liver 14,17,19, colon 14,15,17,20-22, 

stomach 13,23,24, ovary 13,25,26, uterus 27,28, cervix 14,29, 

pancreas 30, and prostate 31,32. PLAC1 is an important 

oncogenic factor and its expression is associated with 

invasiveness, metastasis, and proliferation of cancer 

cells 13,19 and is positively correlated with clinic-patho-

logical parameters of some cancer types 18,24, 31,33. 

Various PLAC1 protein localizations have been re-

ported in cancer cells and tissues including nucleus 
22,24, cytoplasm 19,20,24,30,34, and plasma membrane 13,14, 

34,35. Surface expression of cancer target antigens is of 

great importance that enables antibody-mediated can-

cer immunotherapy. The aim of the present study was 

to express the intact human PLAC1 protein on plasma 

membrane of a eukaryotic cell as a model for future 

anti-PLAC1-based cancer immunotherapy. 

 

Materials and Methods 
 

Cell lines and culture conditions 
CHO-K1, MCF7, and MDA-MB-231 cell lines were 

provided by the National Cell Bank of Iran (Pasteur 

Institute of Iran, Tehran, Iran). CHO-K1 and MCF7 

cell lines were cultured in RPMI 1640 (Gibco, Invitro-

gen, CA, USA) and MDA-MB-231 cells in DMEM-

F12 (Gibco) media. All media were supplemented with 

10% Fetal Bovine Serum (FBS) (Gibco), 100 U/mL 

penicillin, and 100 μg/ml streptomycin in a humidified 

incubator at 37C with 5% CO2. 
 

Construction of expression vectors for full human PLAC1 

protein 

RNA was extracted from MCF7cells using ambion 

PureLink RNA Mini Kit (Thermo Fisher Scientific, 

Waltham, MA, USA) according to the manufacturer’s 

recommendations. RNA integrity was confirmed by 

agarose gel electrophoresis and the concentration was 

determined by measuring the Optical Density (OD) at 

260 nm in a NanoDrop spectrophotometer (Thermo 

Fisher Scientific). First strand cDNA was synthesized 

using ~3 μg (10 μl) of RNA, 4 μl 5X reaction buffer 

(Thermo Fisher Scientific), 2 µl dNTPs (Roche, Basel, 

Switzerland), 1 μl N6 random hexamers (Thermo Fish-

er Scientific), 1 μl reverse transcriptase (Thermo Fisher 

Scientific), and 2 μl water in a total volume of 20 μl as 

follows: 10 min at 25°C, 60 min at 42°C and 10 min at 

70°C. The sequence of primers for amplification of 

PLAC1 was as follows: sense5'-ATATGCTAGCGC 

CACCATGGGCATGAAAGTTTTTAAGTTTATAA 

CTGATG-3' (with NheI restriction site, Kozak se-

quence, and start codon) and antisense 5'-TATGGA 

TCCTCAGTGGTGGTGGTGGTGGTGCATGGACC 

CAATCATATCATC-3' (with BamH1 restriction site, 

stop codon, and His-tag sequence). The PCR amplifi-

cation was carried out under the following conditions: 

initial denaturation at 94°C for 5 min, a 30- cycle am-

plification (98°C for 10 s, 55°C for 30 s, and 72°C for 

30 s), and a final extension for 5 min at 72°C. PCR 

reactions were performed in a 20 μl volume containing 

1 µl cDNA, 0.25 µl (10 pmoles/µl) of each primer, 8.5 

µl water, and 10 µl Taq DNA Polymerase Master Mix 

RED (Ampliqon, Odense, Denmark). Amplicons were 

digested byNheI/BamH1 and inserted into the digest-

ed/dephosphorylated pIRES2-EGFP (Takara Bio, 

Mountain View, CA, USA) andLeGO-iG2 (Addgene, 

Cambridge, MA, USA) expression vectors. The ligated 

mixtures were chemically transformed into E. coli DH5 

alpha. Positive colonies were screened using colony 

PCR experiment. Finally, plasmids were extracted and 

further confirmed through double digestion and se-

quencing experiments. 

In the second approach, the pIRES2-EGFP vector 

was engineered to display the chimeric PLAC1 protein 

on the plasma membrane of CHO-K1 cells. Chimeric 

PLAC1 (TR-PLAC1) composed of cytoplasmic and 

SA sequence of TFR1 (aa 1-99) was fused in-frame to 

truncated PLAC1 protein (aa 50-212). The TR-PLAC1 

sequence was codon-optimized and cloned into pIRE-

S2-EGFP vector by Biomatik Company (Ontario, Can-

ada) where the construct was finally confirmed using 

double digestion and sequencing analysis. 
 

Transient transfection and generation of stable cell line  
CHO-K1 cells were transfected with pIRES2-EGFP-

TR-PLAC1, pIRES2-EGFP-PLAC1, LeGO-iG2-PLAC1 

or respective empty vectors using lipofectamine 2000 

or 3000 (Thermo Fisher Scientific) according to the 

manufacturer’s protocol. After 24 or 48 hr, transiently 

transfected cells were used for RT-PCR, WB, ICC, IF, 

and/or flow cytometric analysis. For polyclonal stable 

cell line generation, transiently transfected cells were 

treated with 900 µg/ml G418 (Sigma, St. Louis, MA, 

USA) for14 days. 
 

Reverse transcription polymerase chain reaction (RT-PCR) 

CHO-K1 cells were transiently transfected using 

pIRES2-EGFP-PLAC1, LeGO-iG2-PLAC1 or respec-

tive empty vectors in 12-well plates. Twenty-four hr 

after transfection, cells were harvested using trypsine-

EDTA and RNA was extracted as described above. 

DNA contamination was removed using a commercial 

kit (Sigma, Product Number: AMPD1) according to the 

manufacturer’s recommendation. cDNA was synthe-

sized as described above and then used for PLAC1 

amplification with the following primers: sense 5'-

ATTACATATGGCCCCCCAAAAGTCCCCATG-3' 

and antisense 5'-ATAAAGCTTTCACATGGACCCA 

ATCATATCATC-3'. The following PCR program was 
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used for DNA amplification: 94°C for 5 min; 30 cycles 

at 98°C for 10 s, 60°C for 30 s, 72°C for 30 s; and a 

final extension at 72°C for 2 min. PCR reactions were 

performed in a 20 μl volume containing 2 µl cDNA, 

0.5 µl (10 pmoles/µl) of each primer, 7 µl water, and 

10 µl Taq DNA Polymerase Master Mix RED (Ampli-

qon). 

As an internal control, β-actin was amplified.  A 366 

bp β-actin PCR product was amplified using sense 5'-

GCAAGAGATGGCCACTGCCGC-3'and antisense 5'-

GCTGACAGGATG-CAGAAGGAGA-3' primers. The 

PCR amplification was carried out using initial dena-

turation at 94°C for 5 min, a 25- cycle amplification 

(98°C for 10 s, 60°C for 20 s, and 72°C for 25 s), and a 

final extension for 5 min at 72°C. PCR reactions were 

performed in a 20 μl volume containing 2 µl cDNA, 

0.25 µl (10 pmoles/µl) of each primer, 7.5 µl water, 

and 10 µl Taq DNA Polymerase Master Mix RED 

(Ampliqon). PCR products (expected product size 291 

bp for PLAC1 and 366 bp for β-actin) were evaluated 

using 1% agarose gel electrophoresis. 
 

Western blot 

Western blot analysis was done as described else-

where 36-38. Briefly, transfected cells were harvested 

twenty-four hr after transfection with saline sodium 

citrate buffer pH=8.0 (15 mM sodium citrate and 130 

mM potassium chloride) and washed three times with 

cold PBS. 1×106 cells were lysed in 50 µl sample buff-

er. Twenty µl of cell lysates and 28 ng recombinant 

human PLAC1 (rhPLAC1) 36 were run on a 15% SDS-

PAGE gel. The membrane was then probed with either 

rabbit anti-rhPLAC1 antibody 32 (2 µg/ml for 1.5 hrs) 

followed by goat anti-rabbit IgG-HRP (1:3000) (Bio-

Rad, Hercules, CA, USA) or with HRP-conjugated 

anti-his tag antibody (HRP anti-his tag Ab) (Sina Bio-

tech, Tehran, Iran) at 1/2000 dilution for 1.5 hr. Anti-

β-actin (clone: D6A8) rabbit monoclonal antibody 

(1:2000) (Cell Signaling Technology, Denver, MA, 

USA) and goat anti-rabbit IgG-HRP (1:3000) (Bio-

Rad) were used for visualization of β-actin. Signals 

were developed by Immobilon Western Chemilumi-

nescent HRP Substrate detection system (Merck milli-

pore, Burlington, Massachusetts, USA) according to 

the manufacturer’s instruction. 
R-phycoerythrin (R-PE)-anti-rhPLAC1 Ab conjugation  

R-PE protein (Thermo Fisher Scientific) was conju-

gated to anti-rhPLAC1 Ab 39,40. In brief, five hundred 

micro-litter R-PE (2 mg/ml) was mixed with 200 µg 

sulfo-MBS bifunctional crosslinker (Thermo Fisher 

Scientific) for 2 hr followed by dialysis against PBS/ 

EDTA 5 mM. The antibody was partially reduced using 

DTT and then mixed with activated R-PE at 1:2 molar 

ratio (1 mole antibody and 2 moles activated R-PE) for 

2 hr. Conjugated antibody was extensively dialyzed 

against PBS/EDTA 5 mM. 
 

Immunocytochemistry (ICC) and immunofluorescence (IF) 
ICC and IF were done as described elsewhere 41-43. 

Twenty-four hr after transfection, cells were grown on 

a slide and fixed using formaldehyde. In ICC staining, 

slides were blocked with 5% normal mouse serum for 

1 hr and then incubated with HRP anti-his tag Ab 

(1:200) (Sina Biotech) for 2 hr. After washing, signals 

were developed by adding Diaminobenzidine (DAB). 

Digital images were captured by IX71 microscope 

(Olympus, Tokyo, Japan). In IF staining, cells were 

fixed as above, incubated with 10 μg/ml anti-rhPLAC1 

Ab for 1 hr followed by addition of PE-labeled goat 

anti-rabbit Ig (1:100) (Razi Biotech, Tehran, Iran). Mi-

croscopy images were acquired by Olympus IX71 mi-

croscope (Olympus). 
 

Flow cytometry 

Briefly, cells were harvested with saline sodium cit-

rate buffer pH 8.0 and incubated with 5% sheep serum 

for 30 min 42,44. Cells were subsequently incubated-

withPE-anti-rhPLAC1 Ab (5 µg/ml), PE-anti-his tag 

antibody (Biolegend, San Diego, CA, USA) (dilution: 

1:100) or PE-isotype control (5 µg/ml) (Sina Biotech) 

for one hr. For intracellular PLAC1 staining, cells were 

fixed using 1.5% formaldehyde for 15 min. Cells were 

then permeabilized using 0.5% saponin for 15 min, 

incubated with 5% sheep serum for 30 min followed by 

PE-anti-rhPLAC1 Ab (5 µg/ml) incubation for one hr. 

Cells were analyzed by a flow-cytometer (Partec, Mun-

ster, Germany). 

 

Results 
Constructs containing human PLAC1 signal peptide yielded 

stably transfected CHO-K1 cells  
CHO-K1 cells were transfected using pIRES2-

EGFP-PLAC1, LeGO-iG2-PLAC1, or their respective 

empty vectors. Our results showed that there was no 

difference in the EGFP signal of transfected cells when 

examined either 24 or 48-hr post-transfection (data not 

shown). In this experiment, 24 hr post-transfection 

CHO-K1 cells displayed more transfected cells in 

LeGO-iG2-PLAC1 than in pIRES2-EGFP-PLAC1 (Fig-

ure 1A). 24 hr post-transfection cells were used for 

RT-PCR, WB, ICC, IF, and FC experiments. pIRES2-

EGFP- and pIRES2-EGFP-PLAC1- transfected CHO-

K1 cells were further treated with G418 to produce 

stable cells (Figure 1B). 
 

PLAC1 was expressed in submembranous expression but 

not in the surface of transfected CHO-K1 cells 

Using RT-PCR, the presence of human PLAC1 

transcript in pIRES2-EGFP-PLAC1 and LeGO-iG2-

PLAC1 transfected CHO-K1 cells was tested. Our data 

clearly revealed that human PLAC1 transcript was ex-

pressed in CHO-K1 cells transfected with both vectors 

as opposed to their respective empty vectors. Β actin 

gene was used as a housekeeping internal control (Fig-

ure 2A). After confirming the expression of human 

PLAC1 transcript, the expression of PLAC1 at the pro-

tein level was separately investigated by two different 

antibodies by WB. Both PLAC1 transfected cells 

showed the PLAC1 protein band of about 25 kDa when 

probed with anti-rhPLAC1 Ab or HRP labeled anti-his 
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tag antibody (Figure 2B). In this experiment, rhPLAC1 

protein was used as a positive control for anti-

rhPLAC1 Ab. The expression of PLAC1 protein was 

further confirmed by ICC and IF. In ICC experiment, 

since the produced human PLAC1 proteins entailed 

his-tag, HRP-labeled anti-his tag Ab was directly used 

to localize PLAC1 protein. Both pIRES2-EGFP-PLA-

C1- and LeGO-iG2-PLAC1- transfected CHO-K1 cells 

showed submembranous expression of human PLAC1 

protein as shown in figure 2C. Immunofluorescent ex-

periment clearly showed that both pIRES2-EGFP-

PLAC1- and LeGO-iG2-PLAC1- transfected CHO-K1 

cells expressed human PLAC1 protein (Figure 2D). 

Cell surface and intracellular flow cytometry staining 

were employed to assess human PLAC1 localization in 

transfected CHO-K1 cells. The results of cell surface 

staining showed that the human PLAC1 protein was 

not localized on the cell membrane of transfected 

CHO-K1 cells (Figure 2E); in contrast, intracellular 

staining revealed cytoplasmic localization of the ex-

pressed PLAC1 protein (Figure 2F). MDA-MB-231 

cells were used as a positive control. In order to con-

firm the stable expression of PLAC1in stably-trans-

fected cells, the cells were passaged for 2 generations 

and PLAC1expression was monitored by flow cytome-

try. The results showed that successive passage of 

PLAC1-transfected cells do not lead to the obvious 

changes in PLAC1 expression (Figure 2G). 
 

TR-PLAC1 chimeric protein was not expressed in cell sur-

face 

As shown in figure 3A, the full-length TR-PLAC1 

protein composed of cytosolic and SA sequence of 

TFR1 fused to extracellular portion of PLAC1 fol-

lowed by six histidine (6H) amino acids at the C termi-

nal of the protein. This construct was transfected to 

CHO-K1 cells using lipofectamine 3000. The expres-

sion of TR-PLAC1 was examined in CHO-K1 cells 

using WB (Figure 3B). The Molecular Weight (MW) 

of the expressed TR-PLAC1 protein (39 kDa) was 

slightly higher than its predicted MW (31 kDa) using 

ProtParam tool (ExPASy), which may be interpreted 

by post-translational modification during eukaryotic 

expression. Confirmation of TR-PLAC1 protein ex-

pression in WB was followed by flow cytometry local-

ization of PLAC1 in transfected CHO-K1 cells. Alt-

hough TR-PLAC1 was engineered to express the chi-

meric protein on cell surface, flow cytometric analysis 

showed that the chimeric protein did not localize on the 

surface of the CHO-K1 cell (Figure 3C). 

 

Discussion 
9    

The preliminary aim of this study was to express the 

intact human PLAC1 protein on the surface of cancer 

cells as a model for future anti-PLAC1-based cancer 

immunotherapy. To this end, intact human PLAC1 

encompassing its own signal peptide was successfully 

cloned in two different expression vectors and the 

PLAC1 protein expression was confirmed in transfect-

ed CHO-K1 cells. Our data showed that despite the 

expression of PLAC1 in transfected cells, this protein 

was not localized on the plasma membrane. Regarding 

PLAC1 protein, as a type II membrane protein 13. In 

the next attempt, therefore, cytoplasmic and SA se-

quence of TFR1, which is a type II membrane protein, 
45 was fused to extracellular portion of PLAC1 in order 

to express human PLAC1 on the plasma membrane. 

Again, despite the expression of fusion PLAC1 protein, 

FC data showed that this chimeric protein was not lo-

calized on the plasma membrane. 

Human PLAC1 protein at subcellular level was re-

ported to be localized in cell nucleus, cytoplasm, and 

plasma membrane in normal and cancer tissues. Using 

western blot analysis in placental tissue, PLAC1 was 

found to be localized in the microsomal fraction sug-

gesting membranous localization of PLAC1 protein 35. 

In parallel with previous data, our team and other in-

vestigators, using polyclonal antibodies raised against 

amino acids 125-212 14 and 166-177 of PLAC1 protein 
34, showed that PLAC1 was expressed in cell surface of 

syncytiotrophoblasts and cytotrophoblasts. Plasma 

membrane localization of PLAC1 has also been report-

ed using siRNA silencing in breast cancer cell lines, 

MCF-7 and BT-549 13. It has previously been shown 

that PLAC1 protein was localized to cell surface of 

about 30% of prostate cancer cells, LNCaP, DU145 

and PC3 cell lines 32 and plasma membrane in ovarian 

cancer cells, Caov-4 34. Using Immunohistochemistry 

(IHC), cell surface localization of PLAC1 protein has 

also been reported in prostate 31, breast 13, liver 19, and 

colon 20 tumors, although exact localization by IHC 

Figure 1. Transient and stable transfection of CHO-K1 cells with 

human PLAC1. (A) Twenty-four hr post-transfection, CHO-K1 
cells showed higher frequency of transfected cells using LeGO-iG2-

PLAC1 than in pIRES2-EGFP-PLAC1. (B) pIRES2-EGFP- and 

pIRES2-EGFP-PLAC1- transfected CHO-K1 cells were treated with 

G418 antibiotic to produce polyclonal stable cell line. 
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staining is not reliable due to the technical limitations. 

In contrast, there are plenty of reports indicating 

PLAC1 localization into cytoplasmic compartments of 

cancer tissues and cells 19,20,24,30,34. PLAC1 nuclear lo-

calization has also been reported in stomach adenocar-

cinoma 24 and in colorectal adenocarcinoma 22 tissues.  

The reason for heterogeneous localization of PLA-

C1 in different cells remains unclear. Protein distribu-

tion among cellular compartments depends on some 

factors including: 1) type and number of localization 

signals on the protein, 2) the relative strength of each 

signal, 3) the concentration of freely diffusing mole-

cules, 4) and the concentration and activity of localiza-

tion signal receptors 46. Up to now, different molecular 

weighs for PLAC1protein have been reported including 

24 kDa 34, 25.6 kDa 20, 26 kDa 13, 27 kDa 32, and 28-30 

kDa 35. It is unclear that various PLAC1 molecular 

weights reflect its different isoforms or different types 

of Post-Translational Modifications (PTMs). There are 

reports 47-49 showing that aberrant protein glycosylation 

in malignant cells is associated with changes in protein 

sorting and trafficking 50. Different isoforms of a given 

Figure 2. Expression and localization of full human PLAC1 in pIRES2-EGFP-PLAC1- and LeGO-iG2-PLAC1- transfected CHO-K1 cells. (A) The 

presence of human PLAC1 transcript was showed by RT-PCR. (B) PLAC1 protein expression was confirmed by two different antibodies by WB. (C) 
Submembranous PLAC1 protein expression indicating by ICC. Arrows show the positive cells. (D) The expression of PLAC1 protein was also 

showed using IF. DAPI stains cell nucleus. Transiently transfected cells indicated by EGFP expression were stained using anti-rhPLAC1 Ab. (E) Cell 

surface flow cytometry staining revealed that PLAC1 protein was not localized on plasma membrane but intracellular flow cytometry staining con-

firmed cytoplasmic localization of the expressed PLAC1 protein in successive passages (F and G). 
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protein may also have different localizations 51,52. It is 

therefore hypothesized that different PLAC1 isoforms 

or PTM may lead to different localizations. Additional-

ly, there are plenty of reports indicating that some pro-

teins are co-localized with other proteins because of 

their involvement in common functional pathways 53-55. 

It is not clear whether artificial transfection of PLAC1 

in CHO-K1 cells could establish potential interaction 

with other proteins leading to surface expression. Fur-

thermore, investigators showed that proteins cleaved 

by proteases and subsequently the smaller polypeptides 

were localized in different cell compartments 54. Wh-

ether such mechanism is the cause for cytoplasmic ex-

pression of PLAC1in transfected cells needs further 

investigations.  

 

Conclusion 
 

Taken together, it seems that localization of PLAC1 

may be a function of different variables including 

PTM, different isoforms, co-localization with other 

proteins and proteolysis. Different localizations of the 

same protein in different cells may reflect different 

functions 53. In this regard, it can be deduced that arti-

ficial transfection may not necessarily lead to the ex-

pression of a protein with the same function as with 

original protein.   
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